A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Napoly, O.

Paper Title Page
MOPE064 The European XFEL Beam Position Monitor System 1125
 
  • B. Keil, R. Baldinger, R. Ditter, R. Kramert, G. Marinkovic, P. Pollet, M. Roggli, M. Rohrer, V. Schlott, M. Stadler, D.M. Treyer
    PSI, Villigen
  • W. Decking, D. Lipka, D. Nölle, M. Siemens, T. Traber, S. Vilcins
    DESY, Hamburg
  • O. Napoly, C.S. Simon
    CEA, Gif-sur-Yvette
  • J.-P. Prestel, N. Rouvière
    IPN, Orsay
 
 

The Eu­ro­pean XFEL is an X-ray free elec­tron laser user fa­cil­i­ty that is cur­rent­ly being built in Ham­burg by an in­ter­na­tion­al con­sor­tium. The elec­tron BPM sys­tem of the XFEL is de­vel­oped by a col­lab­o­ra­tion of PSI, DESY, and CEA/Saclay/Irfu. Cav­i­ty BPMs will be used in all parts of the E-XFEL where high­est res­o­lu­tion and low­est drift is re­quired, e.g. in the un­du­la­tors and some lo­ca­tions in the beam trans­fer lines. In the cryostats of the su­per­con­duct­ing 17.5GeV main linac, 2/3rds of the BPMs will be but­tons, while 1/3rd will be re-en­trant cav­i­ties that promise high­er res­o­lu­tion than but­tons at low bunch charges. The trans­fer lines will also be equipped with cost-ef­fi­cient but­ton BPMs. The BPM elec­tron­ics is based on a mod­u­lar sys­tem con­cept, with a com­mon FP­GA-based dig­i­tal back-end de­sign for all BPMs and pick­up-spe­cif­ic ana­log RF front-ends. This paper in­tro­duces the de­sign con­cepts and re­ports on the pro­ject sta­tus and mea­sure­ment re­sults of BPM pick­up and elec­tron­ics pro­to­types.

 
TUPEB003 The SuperB Project Accelerator Status 1518
 
  • M.E. Biagini, D. Alesini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, F. Marcellini, G. Mazzitelli, M.A. Preger, P. Raimondi, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma)
  • M.A. Baylac, J.-M. De Conto, Y. Gomez-Martinez, N. Monseu, D. Tourres
    LPSC, Grenoble
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, A.S. Fisher, D. Kharakh, A. Krasnykh, N. Li, D.B. MacFarlane, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J. Seeman, M.K. Sullivan, A.W. Weidemann, J. Weisend, U. Wienands, W. Wittmer, A.C. de Lira
    SLAC, Menlo Park, California
  • S. Bettoni
    CERN, Geneva
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • J. Bonis, G. Le Meur, B.M. Mercier, F. Poirier, C. Prevost, C. Rimbault, F. Touze, A. Variola
    LAL, Orsay
  • F. Bosi
    INFN-Pisa, Pisa
  • A. Chancé, F. Méot, O. Napoly
    CEA, Gif-sur-Yvette
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • I. Koop, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa
 
 

The Su­perB pro­ject is an in­ter­na­tion­al ef­fort aim­ing at build­ing in Italy a very high lu­mi­nos­i­ty e+e- (1036 cm-2 sec-1) asym­met­ric col­lid­er at the B mesons cm en­er­gy. The ac­cel­er­a­tor de­sign has been ex­ten­sive­ly stud­ied and changed dur­ing the past year. The pre­sent de­sign, - based on the new col­li­sion scheme, with large Pi­win­s­ki angle and the use of 'crab' sex­tupoles, which has been suc­cess­ful­ly test­ed at the DAPHNE Phi-Fac­to­ry at LNF Fras­cati, - pro­vides larg­er flex­i­bil­i­ty, bet­ter dy­nam­ic aper­ture and in the Low En­er­gy Ring spin ma­nip­u­la­tion sec­tions, need­ed for hav­ing lon­gi­tu­di­nal po­lar­iza­tion of the elec­tron beam at the In­ter­ac­tion Point. The In­ter­ac­tion Re­gion has been fur­ther op­ti­mized in terms of aper­tures and re­duced back­grounds in the de­tec­tor. The in­jec­tor com­plex de­sign has been also up­dat­ed. A sum­ma­ry of the de­sign sta­tus, in­clud­ing de­tails on lat­tice and spin ma­nip­u­la­tion will be pre­sent­ed in this paper.

 
WEPE001 Optics Studies for the Interaction Region of the International Linear Collider 3338
 
  • R. Versteegen, O. Delferrière, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
 
 

The In­ter­na­tion­al Lin­ear Col­lid­er ref­er­ence de­sign is based on a col­li­sion scheme with a 14 mrad cross­ing angle. Con­se­quent­ly, the de­tec­tor solenoid and the ma­chine axis do not co­in­cide. It pro­vokes a po­si­tion off­set of the beam at the In­ter­ac­tion Point in ad­di­tion to a beam size growth. These ef­fects are mod­i­fied by the in­ser­tion of the an­ti-DID (De­tec­tor In­te­grat­ed Dipole) aim­ing at re­duc­ing back­ground in the de­tec­tor. Fur­ther­more a crab cav­i­ty is nec­es­sary to re­store a 'head on' like col­li­sion, lead­ing to high­er lu­mi­nos­i­ty. This in­tro­duces new beam dis­tor­tions. In this paper, op­tics stud­ies and sim­u­la­tions of beam trans­port in the In­ter­ac­tion Re­gion tak­ing these el­e­ments into ac­count are pre­sent­ed. Cor­rec­tion schemes of the beam off­set and beam size growth are ex­posed and their as­so­ci­at­ed tol­er­ances are eval­u­at­ed.