Paper | Title | Page |
---|---|---|
MOPE064 | The European XFEL Beam Position Monitor System | 1125 |
|
||
The European XFEL is an X-ray free electron laser user facility that is currently being built in Hamburg by an international consortium. The electron BPM system of the XFEL is developed by a collaboration of PSI, DESY, and CEA/Saclay/Irfu. Cavity BPMs will be used in all parts of the E-XFEL where highest resolution and lowest drift is required, e.g. in the undulators and some locations in the beam transfer lines. In the cryostats of the superconducting 17.5GeV main linac, 2/3rds of the BPMs will be buttons, while 1/3rd will be re-entrant cavities that promise higher resolution than buttons at low bunch charges. The transfer lines will also be equipped with cost-efficient button BPMs. The BPM electronics is based on a modular system concept, with a common FPGA-based digital back-end design for all BPMs and pickup-specific analog RF front-ends. This paper introduces the design concepts and reports on the project status and measurement results of BPM pickup and electronics prototypes. |
||
TUPEB003 | The SuperB Project Accelerator Status | 1518 |
|
||
The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the B mesons cm energy. The accelerator design has been extensively studied and changed during the past year. The present design, - based on the new collision scheme, with large Piwinski angle and the use of 'crab' sextupoles, which has been successfully tested at the DAPHNE Phi-Factory at LNF Frascati, - provides larger flexibility, better dynamic aperture and in the Low Energy Ring spin manipulation sections, needed for having longitudinal polarization of the electron beam at the Interaction Point. The Interaction Region has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the design status, including details on lattice and spin manipulation will be presented in this paper. |
||
WEPE001 | Optics Studies for the Interaction Region of the International Linear Collider | 3338 |
|
||
The International Linear Collider reference design is based on a collision scheme with a 14 mrad crossing angle. Consequently, the detector solenoid and the machine axis do not coincide. It provokes a position offset of the beam at the Interaction Point in addition to a beam size growth. These effects are modified by the insertion of the anti-DID (Detector Integrated Dipole) aiming at reducing background in the detector. Furthermore a crab cavity is necessary to restore a 'head on' like collision, leading to higher luminosity. This introduces new beam distortions. In this paper, optics studies and simulations of beam transport in the Interaction Region taking these elements into account are presented. Correction schemes of the beam offset and beam size growth are exposed and their associated tolerances are evaluated. |