A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Nagaitsev, S.

Paper Title Page
MOPEC081 The Concept Design of the CW Linac of the Project X 654
 
  • N. Solyak, E. Gianfelice-Wendt, I.G. Gonin, S. Kazakov, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, N. Perunov, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia
 
 

The concept design of the 2.5 GeV superconducting CW linac of the Project X is discussed. The linac structure and break points for different cavity families are described. The results of the RF system optimization are presented as well as the lattice design and beam dynamics analysis.

 
MOPD010 Lattice of the NICA Collider Rings 690
 
  • A.O. Sidorin, O.S. Kozlov, I.N. Meshkov, V.A. Mikhaylov, G.V. Trubnikov
    JINR, Dubna, Moscow Region
  • V.A. Lebedev, S. Nagaitsev
    Fermilab, Batavia
  • Y. Senichev
    FZJ, Jülich
 
 

Main element of the NICA facility is the collider equipped with stochastic and electron cooling systems to provide experiment with heavy ions like Au, Pb or U at energy from 1 to 4.5 GeV/u with average luminosity of the level of 1027 cm-2 s-1. The possible lattices providing the required parameters are discussed.

 
MOPD061 650 MHz Option for High-energy Part of the Project X linac 825
 
  • V.P. Yakovlev, M.S. Champion, I.G. Gonin, S. Nagaitsev, N. Solyak
    Fermilab, Batavia
  • A. Saini
    University of Delhi, Delhi
 
 

650 MHz option for the high energy part of the 2.6 GeV, CW Project X linac is discussed. It may give significant benefits compared to current 1.3 GHz option based on the utilization of ILC-type beta=1 cavities. Results of the break point optimization for linac stages, cavity optimization and beam dynamics optimization are presented. Possible reduction in the number of cryomodules and linac length compared to the current linac project version is discussed. Cryogenic losses are analyzed also.

 
WEPEC059 The Beam Splitter for the Project X 3025
 
  • N. Solyak, I.G. Gonin, D.E. Johnson, S. Nagaitsev, V.P. Yakovlev
    Fermilab, Batavia
 
 

In the Project X facility a 2.6 GeV, H- CW beam is delivered to three users simultaneously by way of selectively filling appropriate RF buckets at the front end of the linac and then RF splitting them to three different target halls. With the desire to split the H- beam three ways, an RF separator directs two quarters of the beam to one user (Mu2e), one quarter to another user (Kaon), and one quarter to the third (unidentified) user. The natural way is to use a SC structure with the deflecting TM110 mode. Basic requirements to the deflecting RF structure are formulated and design of the deflecting SC cavities is presented.

 
THPE094 A Search for Integrable Four-dimensional Nonlinear Accelerator Lattices 4743
 
  • S. Nagaitsev
    Fermilab, Batavia
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee
 
 

Integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and/or electrtic field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents two examples of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.