Paper | Title | Page |
---|---|---|
MOPE025 | Status for Beam Diagnostics of SESAME | 1020 |
|
||
SESAME machine consists of a 22.5 MeV microtron, 800 MeV booster and a 2.5 GeV storage ring. The electron beam diagnostics will play a major rule during the commisioning and normal operation with different modes of single bunch and multi bunch operations. Furthermore the beam parameteres during injection, acceleration and storing the beam will be measured, monitored and integrated into other subsystems. The major diagnostics components and the general design for booster and storage ring are reported in this paper. |
||
WEOARA02 | Progress Report of SESAME Project | 2424 |
|
||
The construction of SESAME, a 2.5 GeV, and 3rd generation synchrotron-light source is under progress. The first electron beam from the Microtron at low energy (less than 10 MeV) could be obtained on July, 14th, 2009 and reproduced several times. The tests of the injection and extraction system as well as the hydraulically and electrical tests of the main magnets of the Booster are complete and the vacuum chambers tests are underway. The Booster RF cavity and its plunger have been conditioned successfully by 1.7 kW CW RF power. The installation of the Booster is expected to start after the completion of the shielding. The design of the completely new storage ring is finalised and the Phase 1 beamlines is updated. |
||
|
||
TUPE080 | Study of High Harmonic Generation at Synchrotron SOLEIL using an Echo Enabling Technique | 2308 |
|
||
SOLEIL is presently installing a laser bunch slicing set-up to produce ultra-short X-ray pulses. We propose a method to generate coherent synchrotron radiation at high harmonics in a storage ring using an echo scheme. Like in the method proposed recently for free electron lasers, the echo scheme uses two modulators and two dispersive sections. We show that this can be done at the synchrotron SOLEIL by adapting the classical slicing scheme. In the present study at SOLEIL, the two laser/electrons interactions are planned to occur in two out of vacuum wigglers of period 150 mm, and the high harmonic radiation will be emitted in an APPLE-II type undulator with a period of 44mm or 80 mm in the beamline TEMPO or with a period of 52 mm in the beamline DEIMOS. |
||
WEPEA012 | Status of the SOLEIL Femtosecond X-ray Source | 2499 |
|
||
An electron bunch slicing set-up is being installed on the SOLEIL storage ring, based on Zholents and Zolotorev method [1]. This will provide 100 fs long X-ray pulses with reasonable flux to two existing beamlines, working with soft X-rays (TEMPO) and hard X-rays (CRISTAL). The parameters of the laser system and of the wiggler modulator, and the optimisation of the laser focusing optics and beam path, from the laser hutch in the experimental hall to the inside of the storage ring tunnel have been finalised. The construction work will start early 2010, including the ordering of the laser, the construction of the laser hutch, the construction of the wiggler, the installation of a new modified vacuum dipole chamber by which the laser will enter into the ring, and the modifications of some components in the beamlines front-ends to provide the best possible separation of the sliced X-Ray. In this paper, we will report on the status of the installation of the set-up and the expected performances including laser-electron interaction efficiency, halo background effect and the possible operation filling patterns. |
||
WEPEA010 | Operation and Performance Upgrade of the SOLEIL Storage Ring | 2493 |
|
||
The SOLEIL synchrotron light source is now delivering photons to 20 beamlines with a current of 400 mA in top-up mode. The long and short term H and V beam position stabilities are in the range of one micron thanks to the efficient slow and fast orbit feedbacks, and to the improved tunnel temperature regulation. The bunch by bunch transverse feedback is running with two independent H and V loops. To enable canted undulator implementations, a 3 magnet chicane has been installed in a medium straight whereas an additional triplet of quadrupole was inserted in the middle of a long straight to create a double low vertical beta. 17 insertion devices are now installed in the storage ring, 2 will be added early 2010, 8 are under construction, including a cryogenic undulator. Following the significant progression of the vacuum conditioning, the lifetime is now mainly Touchek limited. An electron bunch slicing set-up is also being installed to provide 100 fs long X-rays pulses to two existing beamlines. ~4500 hours will have been delivered in 2009 to the Beamlines with an availability above 96 % thanks to the very reliable operation of the unique SOLEIL RF system. |
||
WEPEA011 | Double Low Beta Straight Section for Dual Canted Undulators at SOLEIL | 2496 |
|
||
SOLEIL is the French 2.75 GeV high brilliance third generation synchrotron light source delivering photons to 20 beamlines with a current of 400 mA in multibunch or hybrid modes, and 60 mA in 8 bunch mode. There are already 17 insertion devices installed and 9 others are planned in the next 2 coming years. Among them, two canted in vacuum insertion devices are planned, for the Nanoscopium and Tomography beamlines, and will be accommodated in a 12 m long straight section, with a 6.5 mrad separation angle. These ~150 m long beamlines will exploit the high brilliance and coherence characteristics of the X-ray (5-20 keV) beam both for diffraction limited focusing and for contrast formation. To provide low vertical beta functions at each undulator, an extra triplet of quadrupoles was added in the middle of the section. We present here the lattice implementation footprint, the different working point under investigations as well as the first results of the measurements on the machine performances. |
||
THPE061 | Non Linear Beam Dynamics Studies at SOLEIL using Experimental Frequency Map Analysis | 4653 |
|
||
SOLEIL, the French 2.75 GeV high brilliance third generation synchrotron light source is delivering photons to 20 beam lines and is presently equipped with 17 insertion devices. Significant reduction of injection efficiency and beam lifetime are observed when using some undulator configurations in daily operation. Measurements on electron beam, such as beam lifetime versus RF voltage, have shown that the energy acceptance is strongly reduced by the combined non linear effects of the four U20 in-vacuum undulators and the HU640 10m long undulator used in linear vertical polarization mode. This paper will present the on and off momentum frequency map measurements that have been performed in order to investigate such effects. The reduction of the on momentum dynamic aperture in the presence of the U20 undulators is confirmed. The off momentum frequency map measurements confirm that the energy acceptance of the bare machine is very large as predicted by tracking calculations, and clearly exhibit the strong energy acceptance reduction due to undulators. |