A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Murokh, A.Y.

Paper Title Page
MOPEA047 Design of a Compact, Inexpensive Linac for Use in Self-contained Irradiators 178
 
  • S. Boucher, X.D. Ding, A.Y. Murokh
    RadiaBeam, Marina del Rey
 
 

Self-con­tained ir­ra­di­a­tors are used for a num­ber of ap­pli­ca­tions, such as blood ir­ra­di­a­tion to pre­vent Graft-Ver­sus-Host-Dis­ease, biomed­i­cal and ra­di­a­tion re­search, and de­tec­tor cal­i­bra­tion. They typ­i­cal­ly use a sealed Cs-137 source to ir­ra­di­ate an item with­in a treat­ment com­part­ment. The US Na­tion­al Re­search Coun­cil has iden­ti­fied as a pri­or­i­ty the re­place­ment of such high-ac­tiv­i­ty sources with al­ter­na­tive tech­nolo­gies, in order to pre­vent them from falling into the hands of ter­ror­ists for use in a Ra­di­o­log­i­cal Dis­per­sal De­vice ("dirty bomb"). Ra­di­a­Beam Tech­nolo­gies is de­vel­op­ing a novel, com­pact, low-cost lin­ear ac­cel­er­a­tor "the Mi­croLinac" for use in self-con­tained ir­ra­di­a­tors in order to ef­fec­tive­ly re­place Cs-137 in such de­vices. A pre­vi­ous ver­sion of the Mi­croLinac, orig­i­nal­ly de­vel­oped at SLAC, was de­signed to pro­duce 1 MeV elec­tron en­er­gy and 10 μA of av­er­age cur­rent. Ra­di­a­Beam has re­designed the linac to pro­duce 1.5 MeV and 20 μA cur­rent, in order to match the pen­e­tra­tion and dose rate of a typ­i­cal blood ir­ra­di­a­tor. This paper de­scribes the new de­sign of the Mi­croLinac and our fu­ture de­vel­op­ment plans.

 
MOPE093 A High Resolution Transverse Diagnostic based on Fiber Optics 1203
 
  • R.B. Agustsson, G. Andonian, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Santa Monica
  • D.L. Griscom
    NRL, Washington D.C.
 
 

A beam pro­file mon­i­tor uti­liz­ing the tech­no­log­i­cal ad­vances in fiber optic man­u­fac­tur­ing to ob­tain mi­cron level res­o­lu­tion is under de­vel­op­ment at Ra­di­a­Beam Tech­nolo­gies. This fiber-op­tic pro­fil­ing de­vice would pro­vide a lost cost, turn-key so­lu­tion with nom­i­nal op­er­a­tional su­per­vi­sion and re­quires min­i­mal beam­line real es­tate. We are cur­rent­ly study­ing and at­tempt­ing to mit­i­gate the tech­ni­cal chal­lenges faced by a fiber optic based di­ag­nos­tic sys­tem with a focus on ra­di­a­tion dam­age to the fibers and its ef­fect on sig­nal in­tegri­ty. Pre­lim­i­nary ir­ra­di­a­tion stud­ies and con­cep­tu­al op­er­a­tion of the sys­tem are pre­sent­ed.

 
MOPE094 X-band Travelling Wave Deflector for Ultra-fast Beams Diagnostics 1206
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Santa Monica
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

The quest for de­tailed in­for­ma­tion con­cern­ing ul­tra-fast beam con­fig­u­ra­tions, phase spaces and high en­er­gy op­er­a­tion is a crit­i­cal task in the world of lin­ear col­lid­ers and X-ray FELs. Huge en­hance­ments in di­ag­nos­tic res­o­lu­tions are rep­re­sent­ed by RF de­flec­tors. In this sce­nario, Ra­di­a­beam Tech­nolo­gies has de­vel­oped an X-band Trav­el­ling wave De­flec­tor (XTD) in order to per­form lon­gi­tu­di­nal char­ac­ter­i­za­tion of the sub­pi­cosec­ond ul­tra-rel­a­tivis­tic elec­tron beams. The de­vice is op­ti­mized to ob­tain a sin­gle digit fem­tosec­ond res­o­lu­tion using 100 MeV elec­tron beam pa­ram­e­ters at the Ac­cel­er­a­tor Test Fa­cil­i­ty (ATF) at Brookhaven Na­tion­al Lab­o­ra­to­ry; how­ev­er, the de­sign can be eas­i­ly ex­tend­ed to be uti­lized for di­ag­nos­tics of GeV-class beams. The XTD de­sign fab­ri­ca­tion and tun­ing re­sults will be dis­cussed, as well as in­stal­la­tion and com­mis­sion­ing plans at ATF.


* J. England et al., "X-Band Dipole Mode Deflecting Cavity for the UCLA Neptune Beamline".
** D. Alesini, "RF deflector-based sub-ps beam diagnostics: application to FELs and advanced accelerators".

 
MOPE095 A 10 MHz Pulsed Laser Wire Scanner for Energy Recovery Linacs 1209
 
  • A.Y. Murokh, M. Ruelas, R. Tikhoplav
    RadiaBeam, Santa Monica
  • D.M. Gassner, E. Pozdeyev
    BNL, Upton, Long Island, New York
 
 

For high av­er­age cur­rent elec­tron ac­cel­er­a­tors, such as En­er­gy Re­cov­ery Linacs (ERL), the char­ac­ter­i­za­tion of basic elec­tron beam prop­er­ties re­quires non-in­ter­cep­tive di­ag­nos­tics. One promis­ing non-de­struc­tive ap­proach for a high av­er­age cur­rent beam di­ag­nos­tic is the laser wire scan­ner (LWS). Ra­di­a­Beam Tech­nolo­gies is de­vel­op­ing an in­ex­pen­sive, stand-alone laser wire scan­ner sys­tem specif­i­cal­ly adapt­ed to ERL pa­ram­e­ters. The pro­posed sys­tem uti­lizes dis­tinc­tive fea­tures of ERL beams, such as a rel­a­tive­ly long bunch length and ul­tra-high rep­e­ti­tion rate, to max­i­mize pho­ton count while using off the shelf laser tech­nol­o­gy. The Ra­di­a­Beam LWS pro­to­type present­ly under de­vel­op­ment will be in­stalled and com­mis­sioned at the Brookhaven Na­tion­al Lab­o­ra­to­ry (BNL) ERL fa­cil­i­ty. This sys­tem's de­sign and pro­ject­ed per­for­mance are dis­cussed here­in.

 
MOPE096 Progress Report on the Development of the Real Time Interferometer for Bunch Length Determination 1212
 
  • G. Andonian, A.Y. Murokh, A.G. Ovodenko, M. Ruelas, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D. Dooley
    Spectrum Detector, Lake Oswego, Oregon
  • U. Happek
    UGA, Athens, Georgia
  • S. Reiche
    PSI, Villigen
 
 

This paper re­ports on the progress of the de­vel­op­ment of a bunch length di­ag­nos­tic for high bright­ness beams. The di­ag­nos­tic, termed the real time in­ter­fer­om­e­ter, is a sin­gle shot, au­to­cor­re­la­tor that out­puts the in­ter­fer­o­gram of co­her­ent ra­di­a­tion emit­ted from com­pressed, high-bright­ness beams. The de­vice uses all-re­flec­tive ter­a­hertz op­tics as well as a high­ly sen­si­tive py­ro­elec­tric-based de­tec­tor array. For ini­tial test­ing, co­her­ent tran­si­tion ra­di­a­tion is used, how­ev­er, the di­ag­nos­tic can be used in a non-de­struc­tive man­ner if co­her­ent edge or syn­chrotron ra­di­a­tion is em­ployed. Cur­rent re­search in­cludes di­ag­nos­tic de­sign and pre­lim­i­nary tests con­duct­ed at the BNL Ac­cel­er­a­tor Test Fa­cil­i­ty.

 
WEPD054 Novel Ultrafast Mid-IR Laser System 3216
 
  • R. Tikhoplav, A.Y. Murokh
    RadiaBeam, Santa Monica
  • I. Jovanovic
    Purdue University, West Lafayette, Indiana
 
 

Of par­tic­u­lar in­ter­est to X-ray FEL light source fa­cil­i­ties is En­hanced Self-Am­pli­fied Spon­ta­neous Emis­sion (ESASE) tech­nique. Such a tech­nique re­quires an ul­tra­fast (20-50 fs) high peak power, high rep­e­ti­tion rate re­li­able laser sys­tems work­ing in the mid-IR range of spec­trum (2μm or more). The ap­proach of this pro­posed work is to de­sign a novel Ul­tra­fast Mid-IR Laser Sys­tem based on op­ti­cal para­met­ric chirped-pulse am­pli­fi­ca­tion (OPCPA). OPCPA is a tech­nique ide­al­ly suit­ed for pro­duc­tion of ul­tra­short laser puls­es at the cen­ter wave­length of 2 μm. Some of the key fea­tures of OPCPA are the wave­length agili­ty, broad spec­tral band­width and neg­li­gi­ble ther­mal load.

 
THPEA059 Ultra-high Gradient Compact S-band Linac for Laboratory and Industrial Applications 3807
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • V.A. Dolgashev
    SLAC, Menlo Park, California
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

There is grow­ing de­mand from the in­dus­tri­al and re­search com­mu­ni­ties for high gra­di­ent, com­pact RF ac­cel­er­at­ing struc­tures. The com­mon­ly used S-band SLAC-type struc­ture has an op­er­at­ing gra­di­ent of only about 20 MV/m; while much high­er op­er­at­ing gra­di­ents (up to 70 MV/m) have been re­cent­ly achieved in X-band, as a con­se­quence of the sub­stan­tial ef­forts by the Next Lin­ear Col­lid­er (NLC) col­lab­o­ra­tion to push the per­for­mance en­ve­lope of RF struc­tures to­wards high­er ac­cel­er­at­ing gra­di­ents. Cur­rent­ly how­ev­er, high power X-band RF sources are not read­i­ly avail­able for in­dus­tri­al ap­pli­ca­tions. There­fore, Ra­di­a­Beam Tech­nolo­gies is de­vel­op­ing a short, stand­ing wave S-band struc­ture which uses fre­quen­cy scaled NLC de­sign con­cepts to achieve up to a 50 MV/m op­er­at­ing gra­di­ent at 2856 MHz. The de­sign and pro­to­type com­mis­sion­ing plans are pre­sent­ed.