A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Muratori, B.D.

Paper Title Page
MOPEC046 Modelling of the EMMA ns-FFAG Injection Line using GPT 561
 
  • R.T.P. D'Arcy
    UCL, London
  • D.J. Holder, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator presently under construction at Daresbury Laboratory, UK. The energy recovery linac ALICE will serve as an injector for EMMA within the energy range of 10 to 20 MeV. The injection line consists of a symmetric 30° dogleg to extract the beam from ALICE, a matching section and a tomography section for transverse emittance measurements. This is followed by a transport section to the injection point of the EMMA ring. Commissioning of the EMMA injection line started in early 2010. A number of different injection energy and bunch charge regimes are planned; for some of the regimes the effects of space charge will be significant. It is therefore necessary to model the electron beam transport in this line using a code capable of both calculating the effect of, and compensating for, space charge. Therefore the General Particle Tracer (GPT) code has been used. A range of injection beam parameters have been modelled for comparison with experimental results.

 
TUPEC036 Design of Post Linac Beam Transport for the UK New Light Source Project 1802
 
  • D. Angal-Kalinin, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Angal-Kalinin, F. Jackson, S.P. Jamison, J.K. Jones, B.D. Muratori, N. Thompson
    Cockcroft Institute, Warrington, Cheshire
  • R. Bartolini, I.P.S. Martin
    JAI, Oxford
 
 

The design of free electron laser (FEL) driver needs careful beam transport design to pass very short bunches through the switchyard/spreader to switch the beam to different FEL lines. The spreader design which allows flexibility in operation has been adapted following the LBNL design*. In order to measure the slice properties of the bunches two beam diagnostics lines are proposed, a straight one for beam commissioning purposes and a branch of the spreader similar to the FEL lines to measure the adverse effects that may arise due to passing the short bunches through the kicker and septum magnets. As a part of machine protection, post linac collimation system collimates the halo particles in transverse and energy planes. The design of the collimation, beam spreader and beam diagnostics lines is discussed.


* Zholents A.A. et al, CBP Tech Note 401, 2009

 
WEPE056 Accelerator and Particle Physics Research for the Next Generation Muon to Electron Conversion Experiment - the PRISM Task Force 3473
 
  • J. Pasternak, L.J. Jenner, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow
    UMAN, Manchester
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Kuno, A. Sato
    Osaka University, Osaka
  • A. Kurup
    Fermilab, Batavia
  • J.-B. Lagrange, Y. Mori
    KURRI, Osaka
  • M. Lancaster
    UCL, London
  • S.A. Martin
    FZJ, Jülich
  • C. Ohmori
    KEK/JAEA, Ibaraki-Ken
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • H. Witte, T. Yokoi
    JAI, Oxford
 
 

The next generation of lepton flavour violation experiments will use high intensity and high quality muon beams. Such beams can be produced by sending a short proton pulse to the pion production target, capturing pions and performing RF phase rotation on the resulting muon beam in an FFAG ring, which was proposed for the PRISM project. A PRISM task force was created to address the accelerator and detector issues that need to be solved in order to realise the PRISM experiment. The parameters of the initial proton beam required and the PRISM experiment are reviewed. Alternative designs of the PRISM FFAG ring are presented and compared with the reference design. The ring injection/extraction system, matching with the solenoid channel and progress on the ring's main hardware systems like RF and kicker magnet are discussed. The activity on the simulation of a high sensitivity experiment and the impact on physics reach is described. The progress and future directions of the study are presented in this paper.

 
WEPEA065 Beam Dynamics for the NLS Superconducting Linac 2633
 
  • R. Bartolini, C. Christou, J.H. Han, I.P.S. Martin, J. Rowland
    Diamond, Oxfordshire
  • D. Angal-Kalinin, D.J. Dunning, F. Jackson, B.D. Muratori, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

We present the progress with the design of the 2.25 GeV superconducting linac for the NLS project. We discuss the performance achieved, the optimisation strategies, the relevance of microbunching instability and the analysis of the effect of various jitter sources

 
TUPE010 Status of the Photo Injector Test Facility at DESY, Zeuthen Site (PITZ) 2164
 
  • G. Asova, J.W. Bähr, C.H. Boulware, A. Donat, U. Gensch, H.-J. Grabosch, L. Hakobyan, H. Henschel, M. Hänel, Ye. Ivanisenko, L. Jachmann, M.A. Khojoyan, W. Köhler, G. Koss, M. Krasilnikov, A. Kretzschmann, H. Leich, H.L. Luedecke, J. Meissner, B. Petrosyan, M. Pohl, S. Riemann, S. Rimjaem, M. Sachwitz, B. Schoeneich, J. Schultze, A. Shapovalov, R. Spesyvtsev, L. Staykov, F. Stephan, F. Tonisch, G. Trowitzsch, G. Vashchenko, L.V. Vu, T. Walter, S. Weisse, R.W. Wenndorff, M. Winde
    DESY Zeuthen, Zeuthen
  • K. Flöttmann, S. Lederer, S. Schreiber
    DESY, Hamburg
  • D.J. Holder, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Richter
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • J. Rönsch-Schulenburg
    Uni HH, Hamburg
 
 

The PITZ facility is established for the development and testing of electron sources for FELs like FLASH and the European XFEL. The facility has been upgraded during the shutdown starting in summer 2007 to extend the capability of the facility to produce and characterize low emittance electron beams. The upgraded setup mainly includes a photo cathode L-band RF gun with solenoid magnets for space charge compensation, a post acceleration booster cavity and several diagnostic systems. The diagnostic systems consist of charge and beam profile monitors, emittance measurement systems and spectrometers with related diagnostics in dispersive arms after the gun and the booster cavities. RF gun operation with an accelerating gradient of 60 MV/m at the cathode is realized with this setup. A new photo cathode laser system with broader spectral bandwidth was installed for optimizing the temporal distribution of the laser pulses regarding to electron beam properties. Experimental results with this setup demonstrated very high electron beam quality as required for the photoinjector source of the European XFEL. In this contribution, the PITZ facility setup in year 2008-2009 will be presented.


*for the PITZ Collaboration

 
TUPE096 Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory 2350
 
  • Y.M. Saveliev, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, A.R. Goulden, S.F. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, D.J. Scott, E.A. Seddon, B.J.A. Shepherd, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Harrison, D.J. Holder, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams
    The University of Liverpool, Liverpool
  • D. Laundy
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. Powers
    JLAB, Newport News, Virginia
  • G. Priebe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

 
THPD028 Preparations for EMMA Commissioning 4337
 
  • B.D. Muratori, J.K. Jones, A. Kalinin, A.J. Moss, Y.M. Saveliev, R.J. Smith, S.L. Smith, S.I. Tzenov, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. Cox
    STFC/DL, Daresbury, Warrington, Cheshire
  • D.J. Holder
    Cockcroft Institute, Warrington, Cheshire
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The first results from commissioning EMMA - the Electron Model of Many Applications- are summarised in this paper. EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). EMMA will be the world's first non-scaling FFAG and the paper will outline the characteristics of the beam injected in to the accelerator as well as summarising the results of the extensive EMMA systems commissioning. The paper will report on the results of simulations of this commissioning and on the progress made with beam commissioning.

 
THPD029 Setting the Beam onto the Reference Orbit in Non Scaling FFAG Accelerators 4340
 
  • S.I. Tzenov, J.K. Jones, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • Y. Giboudot
    Brunel University, Middlesex
 
 

Described in the paper are systematic procedures to inject and keep the beam on the reference trajectory for a fixed energy, as applied to the EMMA non scaling FFAG accelerator. The notion of accelerated orbits in FFAG accelerators has been introduced and some of their properties have been studies in detail.

 
THPD030 Characterisation of the ALICE Accelerator as an Injector for the EMMA NS-FFAG 4343
 
  • J.M. Garland, H.L. Owen
    UMAN, Manchester
  • J.W. McKenzie, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Model with Many Applications) is the first proof-of-principle non-scaling FFAG accelerator and is presently under construction at Daresbury Laboratory in the UK. To probe different parts of the bunch phase space during the acceleration from 10 to 20 MeV (which requires rapid resonance crossing), electron bunches are needed with sufficiently small emittance. To understand the phase space painting into the 3000 mm-mrad EMMA acceptance, we have modelled ALICE (Accelerators and Lasers in Combined Experiments) - which acts as an injector for EMMA - using GPT and compared the estimated emittances with measurements made with a variety of screen-based methods. Although the emittances are not yet as small as desired, we obtain reasonable agreement between simulation and measurement.

 
THPEC090 The EMMA Non-scaling FFAG 4266
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • C.D. Beard, J.A. Clarke, S.A. Griffiths, C. Hill, S.P. Jamison, J.K. Jones, A. Kalinin, K.B. Marinov, N. Marks, P.A. McIntosh, B.D. Muratori, J.F. Orrett, Y.M. Saveliev, B.J.A. Shepherd, R.J. Smith, S.L. Smith, S.I. Tzenov, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • N. Bliss, B.G. Martlew, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire
  • M.K. Craddock
    UBC & TRIUMF, Vancouver, British Columbia
  • J.L. Crisp, C. Johnstone
    Fermilab, Batavia
  • Y. Giboudot
    Brunel University, Middlesex
  • E. Keil
    CERN, Geneva
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • F. Méot
    CEA, Gif-sur-Yvette
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • S.L. Sheehy, T. Yokoi
    JAI, Oxford
 
 

The Electron Model for Many Applications (EMMA) will be the World's first non-scaling FFAG and is under construction at the STFC Daresbury Laboratory in the UK. Construction is due for completion in March 2010 and will be followed by commissioning with beam and a detailed experimental programme to study the functioning of this type of accelerator. This paper will give an overview of the motivation for the project and describe the EMMA design and hardware. The first results from commissioning will be presented in a separate paper.