Paper | Title | Page |
---|---|---|
MOPEB026 | Magnet Design of the ENC@FAIR Interaction Region | 334 |
|
||
The Electron Nucleon Collider, proposed as an extension to the High Energy Storage Ring (HESR), is currently investigated and a first layout of the Interaction Region (IR) proposed. The limited size of the machine, the low beam energy and the Lorentz force vector pointing in the same direction for both beams make the IR design demanding. In this paper we present the parameters of the IR magnets, show the boundary conditions given by the beam dynamics and the experiments. We present first 2D designs for the electron and proton triplet magnets along with the separating dipole next to the collision point. Different methods to shield the beam in the spectrometer dipoles are investigated and presented. |
||
MOPEC028 | Recent Triplet Vibration Studies in RHIC | 516 |
|
||
We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed. |
||
MOPEC033 | RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9 | 531 |
|
||
During the second half of Run-9, the Relativistic Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points with both longitudinal and vertical spin direction. Despite an increase in the peak luminosity by up to 40%, the average store luminosity did not increase compared to previous runs. We discuss the luminosity limitations and polarization performance during Run-9. |
||
MOPEC034 | Experience with Split Transition Lattices at RHIC | 534 |
|
||
During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the "Yellow" ring, the RF system of which is slaved to the "Blue" ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration. |
||
MOPEC035 | Optimizing the Beam-beam Alignment in an Electron Lens using Bremsstrahlung | 537 |
|
||
Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle. |
||
TUPEB050 | Ion Bunch Length Effects on the Beam-beam Interaction in a High Luminosity Ring-ring Electron-ion Collider with Head-on Beam-beam Compensation | 1632 |
|
||
The luminosity of a ring-ring electron-ion collider is limited by the beam-beam effect on the electrons. Simulation studies have shown that for short ion bunches this limit can be significantly increased by head-on beam-beam compensation via an electron lens. However, due to the large beam-beam parameter experienced by the electrons, together with an ion bunch length comparable to the beta-function at the IP, electrons perform a sizeable fraction of a betatron oscillation period inside both the long ion bunches and the electron lens. Recent results of our simulation studies of this effect will be presented. |
||
TUPEB051 | Interaction Region Design for the Electron-nucleon Collider ENC at FAIR | 1635 |
|
||
To facilitate studies of collisions between polarized electron and protons at √{s} = 14 GeV constructing an electron-nucleon collider at the FAIR facility has been proposed. This machine would collide the stored 15 GeV polarized proton beam in the HESR with a polarized 3.3 GeV electron beam circulating in an additional storage ring. We describe the interaction region design of this facility, which utilizes the PANDA detector. |
||
MOPEC023 | RHIC Performance for FY10 200 GeV Au+Au Heavy Ion Run | 507 |
|
||
Since the last successful RHIC Au+Au run in 2007 (Run7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run7 RHIC achieved an average store luminosity of <L>=12x1026 cm-2 s-1 by operating with 103 bunches (out of 110 possible), and by squeezing to β*=0.8 m. Our goal for this year's run, Run10, was to achieve an average of <L>=27x1026 cm-2 s-1. The measures taken were decreasing β* to 0.6 m, and reducing longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF system, and separated transition crossings in both rings while ramping. We present an overview of the changes and the results in terms of Run10 increased instantaneous luminosity, luminosity lifetime, and integrated luminosity. |
||
MOPEC026 | Status of the RHIC Head-on Beam-beam Compensation Project | 513 |
|
||
In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design consideration, present the main parameters, and estimate the performance gains. |
||
THPE100 | Bunch Length Effects in the Beam-beam Compensation with an Electron Lens | 4755 |
|
||
Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the beta-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. |