A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mokhov, N.V.

Paper Title Page
MOPEB052 120 mm Superconducting Quadrupole for Interaction Regions of Hadron Colliders 385
 
  • A.V. Zlobin, V. Kashikhin, N.V. Mokhov, I. Novitski
    Fermilab, Batavia
 
 

Magnetic and mechanical designs of a superconducting quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil midplanes to reduce the level of radiation heat deposition in the coil. The quadrupole mechanical structure is based on a thick aluminum collar supported by the iron yoke and stainless steel skin. Magnet parameters including maximum field gradient, field quality and temperature margin for NbTi or Nb3Sn coils at the operating temperatures of 1.9 K and 4.5 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

 
MOPEB053 Magnet Designs for Muon Collider Ring and Interaction Regions 388
 
  • A.V. Zlobin, Y. Alexahin, V. Kashikhin, N.V. Mokhov
    Fermilab, Batavia
 
 

Conceptual designs of superconducting magnets (dipoles and quadrupoles) for a muon collider with a 1.5 TeV c.o.m. energy and an average luminosity of 1034 cm-2s-1 are presented. All magnets are based on the Nb3Sn superconductor and designed to provide an adequate operation field/field gradient in the aperture with the critical current margin required for reliable machine operation. In contrary to proton machines, the dipole magnets should have open midplanes, and, for some of them, the required good field quality region needs to have a vertical aspect ratio of 2:1 that imposes additional challenges for the magnet design. Magnet cross-sections were optimized to achieve the best possible field quality in the magnet aperture occupied with beams. The magnets and corresponding protective measures are designed to handle about 0.5 kW/m of dynamic heat loads from the muon beam decays. Magnet parameters are reported and compared with the requirements.

 
TUPEB022 Muon Collider Interaction Region Design 1566
 
  • Y. Alexahin, E. Gianfelice-Wendt, V. Kashikhin, N.V. Mokhov, A.V. Zlobin
    Fermilab, Batavia
  • V.Yu. Alexakhin
    JINR, Dubna, Moscow Region
 
 

Design of a muon collider interaction region (IR) presents a number of challenges arising from low beta* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 1034/cm2/s with an adequate protection of magnet and detector components.

 
TUOAMH03 Channeling and Volume Reflection Based Crystal Collimation of the Tevatron Circulating Beam Halo (T980) 1243
 
  • V.D. Shiltsev, G. Annala, R.A. Carrigan, A.I. Drozhdin, T.R. Johnson, A.M. Legan, N.V. Mokhov, R.E. Reilly, D.A. Still, R. Tesarek, J.R. Zagel
    Fermilab, Batavia
  • R.W. Assmann, V.P. Previtali, W. Scandale
    CERN, Geneva
  • Y.A. Chesnokov, I.A. Yazynin
    IHEP Protvino, Protvino, Moscow Region
  • V. Guidi
    INFN-Ferrara, Ferrara
  • Yu.M. Ivanov
    PNPI, Gatchina, Leningrad District
  • S. Peggs
    BNL, Upton, Long Island, New York
 
 

The T980 crystal collimation experiment is underway at the Tevatron to study various crystal types and parameters and evaluate if this technique would increase TeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. Planning is underway for dedicated studies during a Tevatron post-collider physics running period.

 

slides icon

Slides

 
WEPE078 The MERIT High-Power Target Experiment at the CERN PS 3527
 
  • K.T. McDonald
    PU, Princeton, New Jersey
  • J.R.J. Bennett
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • O. Caretta, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
  • A.J. Carroll, V.B. Graves, P.T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • I. Efthymiopoulos, F. Haug, J. Lettry, M. Palm, H. Pereira
    CERN, Geneva
  • A. Fabich
    EBG MedAustron, Wr. Neustadt
  • H.G. Kirk, H. Park, T. Tsang
    BNL, Upton, Long Island, New York
  • N.V. Mokhov, S.I. Striganov
    Fermilab, Batavia
  • P.H. Titus
    PPPL, Princeton, New Jersey
 
 

We report on the analysis of data collected in the MERIT experiment at CERN during the Fall of 2007. These results validate the concept of a free mercury jet inside a high-field solenoid magnet as a target for a pulsed proton beam of 4-MW power, as needed for a future Muon Collider and/or Neutrino Factory.