A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mihalcea, D.

Paper Title Page
THPD016 Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator 4310
 
  • J.G. Power, M.E. Conde, W. Gai
    ANL, Argonne
  • Z. Li
    SLAC, Menlo Park, California
  • D. Mihalcea
    Northern Illinois University, DeKalb, Illinois
 
 

We re­port on the de­sign of a 7 cell, stand­ing wave, 1.3 GHz LINAC cav­i­ty and the as­so­ci­at­ed beam dy­nam­ics stud­ies for the up­grade of the drive beam­line for the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­i­ty. The LINAC de­sign is a com­pro­mise be­tween sin­gle bunch op­er­a­tion (100 nC @ 75 MeV) and min­i­miz­ing the en­er­gy droop due to beam load­ning along the bunch train dur­ing bunch train op­er­a­tion. The 1.3 GHz drive bunch train tar­get pa­ram­e­ters are: 75 MeV, 10-20 ns macropulse du­ra­tion, 16x60nC mi­crobunch­es; this is equiv­a­lent to a macropulse cur­rent and beam power of 80 Amps and 6 GW, re­spec­tive­ly. Each LINAC struc­ture ac­cel­er­ates ap­prox­i­mate­ly 1000 nC in 10 ns by a volt­age of 11 MV at an RF power of 10 MW. Due to the short bunch train du­ra­tion de­sired (~10 ns) and the ex­ist­ing fre­quen­cy (1.3 GHz), com­pen­sa­tion of the en­er­gy droop along the bunch train is dif­fi­cult to ac­com­plish with the two stan­dard tech­niques: time-do­main or fre­quen­cy-do­main beam load­ing com­pen­sa­tion. There­fore, to min­i­mize the en­er­gy droop, our de­sign is based on a large stored en­er­gy LINACs. In this paper, we pre­sent our LINAC op­ti­miza­tion method, de­tailed LINAC de­sign, and beam dy­nam­ics stud­ies of the drive beam­line.