A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Migliorati, M.

Paper Title Page
TUPD056 Update of the SPS Impedance Model 2057
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, O.E. Berrig, F. Caspers, A. Grudiev, N. Mounet, E. Métral, G. Rumolo, B. Salvant, E.N. Shaposhnikova, C. Zannini
    CERN, Geneva
  • M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
 

The beam coupling impedance of the CERN SPS is expected to be one of the limitations to an intensity upgrade of the LHC complex. In order to be able to reduce the SPS impedance, its main contributors need to be identified. An impedance model for the SPS has been gathered from theoretical calculations, electromagnetic simulations and bench measurements of single SPS elements. The current model accounts for the longitudinal and transverse impedance of the kickers, the horizontal and vertical electrostatic beam position monitors, the RF cavities and the 6.7 km beam pipe. In order to assess the validity of this model, macroparticle simulations of a bunch interacting with this updated SPS impedance model are compared to measurements performed with the SPS beam.

 
TUPEC027 Microbunching and RF Compression 1776
 
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Venturini
    LBNL, Berkeley, California
 
 

Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

 
TUPEC028 Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator 1779
 
  • C. Vaccarezza, E. Chiadroni, M. Ferrario
    INFN/LNF, Frascati (Roma)
  • G. Dattoli, L. Giannessi, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Venturini
    LBNL, Berkeley, California
 
 

The effects of microbunching instability for the SPARX accelerator have been analyzed by means of different numerical simulation codes and analytical approach. The laser heater counteracting action has been also addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

 
WEPEB034 Superb Bunch-by-bunch Feedback R&D 2761
 
  • A. Drago, M.M. Beretta
    INFN/LNF, Frascati (Roma)
  • K.J. Bertsche, A. Novokhatski
    SLAC, Menlo Park, California
  • M. Migliorati
    Rome University La Sapienza, Roma
 
 

The SuperB project has the goal to build in the Frascati or Tor Vergata area, an asymmetric e+/e- Super Flavor Factory to achieve a peak luminosity > 1036 cm-2 s-1. The SuperB design is based on collisions with extremely low vertical emittance beams. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R&D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB feedback) project approved within the 2010 budget. One of the first steps of the R&D program consists in the upgrade and test of new 12-bit feedback systems in the vertical plane of the DAΦNE main rings. The systems are the direct evolution of the previous 8-bit system design by a KEK/SLAC/LNF collaboration, yielding a good compatibility with the powerful diagnostics and analysis programs developed in the past. Studies on their effects in the longitudinal plane are also in progress.

 
THPD038 Hybrid Schemes for the Post-acceleration of Laser Generated Protons 4363
 
  • A. Mostacci, M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
  • D. Alesini, P. Antici
    INFN/LNF, Frascati (Roma)
  • L. Picardi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

Protons generated by the irradiation of a thin metal foil by a high-intensity short-pulse laser have shown to posses interesting characteristics in terms of energy, emittance, current and pulse duration. They might therefore become in the next future a competitive source to conventional proton sources. Previous theoretical and numerical studies already demonstrated the possibility of an efficient coupling between laser-plasma acceleration of protons with traditional RF based beam-line accelerator techniques. This hybrid proton accelerator would therefore benefit from the good properties of the laser-based source and from the flexibility and know-how of beam handling as given from RF based accelerator structure. The proton beam parameters of the source have been obtained from published laser interaction experimental results and are given as input to the numerical study by conventional accelerator design tools. In this paper we discuss recent results in the optimization and design of the such hybrid schemes in the context of proton accelerators for medical treatments.

 
THPD053 Capture and Transport of Electron Beams from Plasma Injectors 4401
 
  • P. Antici, A. Mostacci
    INFN/LNF, Frascati (Roma)
  • C. Benedetti
    Bologna University, Bologna
  • M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
 
 

Electron beams produced by laser-plasma interaction are attracting the interest of the conventional accelerator community. In particular Laser-accelerated electrons are particularly interesting as source, considering their high initial energy and their strong beam current. Moreover, the advantages of using laser-plasma electron beam can be expressed in terms of size and cost of the global accelerating infrastructure. However, improvements are still necessary since, currently, the many laser-accelerated beams are characterized by a large energy spread and a high beam divergence that degrades quickly the electron beam properties and makes those sources not suitable as a replacement of conventional accelerators. In this paper, we report on the progress of the study related to capture, shape and transport of laser generated electrons by means of tracking codes. Our study has focused on laser-generated electrons obtained nowadays by conventional multi hundred TW laser systems and on numerical predictions. We analyze different lattice structures, working on the optimization of the capture and transport of laser-accelerated electrons. Results and open problems are shown and discussed.