A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Michel, P.

Paper Title Page
TUPEC003 The ELBE Accelerator Facility Starts Operation with the Superconducting RF Gun 1710
 
  • R. Xiang, A. Arnold, H. Büttig, D. Janssen, M. Justus, U. Lehnert, P. Michel, P. Murcek, A. Schamlott, Ch. Schneider, R. Schurig, F. Staufenbiel, J. Teichert
    FZD, Dresden
  • T. Kamps, J. Rudolph, M. Schenk
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • G. Klemz, I. Will
    MBI, Berlin
 
 

As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will be discussed.

 
THPEA069 Runtime Experience and Impurity Investigations at the ELBE Cryogenic Plant 3828
 
  • Ch. Schneider, P. Michel
    FZD, Dresden
  • Ch. Haberstroh
    TU Dresden, Dresden
 
 

The superconducting linear accelerator ELBE at the Forschungszentrum Dresden/Rossendorf has two superconducting accelerator modules and a superconducting photo injector (SRF-Gun). They are operated by a cryogenic Helium plant with a cooling power of 200 W at 1.8 K. Since the commissioning of the plant in 1999 minor and major impurity problems have influenced the operation stability of the plant. The presentation will give an overview of the ELBE cryogenic system and will focus on the different sources of plant contamination and their effects on the plant operation which have been found during the nearly 10 years of plant lifetime. Especially the contamination with residues of oil brake up so as air and water from different sources have limited the run periods of the plant and effected special service and maintenance procedures.