A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Messerly, M. J.

Paper Title Page
TUPD097 Laser Technology for Precision Monoenergetic Gamma-ray Source R&D at LLNL 2126
 
  • M. Shverdin, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, M. Betts, T.S. Chu, C.A. Ebbers, D.J. Gibson, F.V. Hartemann, R.A. Marsh, D.P. McNabb, M. J. Messerly, H.H. Phan, M.A. Prantil, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California
 
 

Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab. We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 uJ temporally and spatially shaped UV pulses at 120 Hz to generate a low emmittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

 
TUPD098 Overview of Mono-energetic Gamma-ray Sources & Applications 2129
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, T.S. Chu, R.R. Cross, C.A. Ebbers, D.J. Gibson, R.A. Marsh, D.P. McNabb, M. J. Messerly, M. Shverdin, C. Siders
    LLNL, Livermore, California
  • E.N. Jongewaard, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks
    SLAC, Menlo Park, California
  • V. A. Semenov
    UCB, Berkeley, California
 
 

Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence, photo-fission, and medical imaging.