A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Meshkov, I.N.

Paper Title Page
MOPEB040 Superconducting Magnets for the NICA Facility at JINR: Status of the Design and Construction Plans 361
 
  • A.D. Kovalenko, N.N. Agapov, V.D. Kekelidze, H.G. Khodzhibagiyan, I.N. Meshkov, V.A. Mikhaylov, V.A. Petrov, A.N. Sissakian, A. Sorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

NICA (Nuclotron-based Ion Collider fAcility) is the new accelerator complex currently under construction at JINR. The facility is aimed to provide collider experiments with heavy ions up to uranium (gold at the beginning stage) with a centre of mass energy up to 11 GeV/u and an average luminosity up to 1027 cm-2 s-1. The collisions of polarized deuterons and protons are foreseen also. The accelerator complex includes two injector linacs, a superconducting booster synchrotron, a 6 GeV/u superconducting synchrotron (existing Nuclotron) and a collider consisting of two storage rings. Different modifications of superferric magnets based on a hollow composite NbTi cable operating at 4.5 K is proposed to be used for the NICA booster and collider rings. The twin-aperture collider dipole consists of two vertically assembled cold masses placed inside a common thermal shield and a common cryostat. The dipole good field aperture is fixed to 60 mm. The 2 T option, which design is very similar to the Nuclotron's one, was fixed as basis for the collider of 350 m long. R&D work on a curved 4 T Cosine(θ)-dipoles based on a hollow Nuclotron-type cable is proposed to be continued.

 
MOPD007 Design of the Nuclotron Booster in the NICA Project 681
 
  • A.O. Sidorin, N.N. Agapov, A.V. Eliseev, V. Karpinsky, H.G. Khodzhibagiyan, A.D. Kovalenko, G.L. Kuznetsov, I.N. Meshkov, V.A. Mikhaylov, V. Monchinsky, A.V. Smirnov, G.V. Trubnikov, B. Vasilishin
    JINR, Dubna, Moscow Region
  • A.V. Butenko
    JINR/LHE, Moscow
 
 

The main goal of the Nuclotron booster construction are following: accumulation up to 4·10+9 Au32+ ions; acceleration of the ions up to energy of 600 MeV/u that is sufficient for stripping of the ions to the bare nucleus state; simplification of the requirements to the vacuum conditions in the Nuclotron; forming of the required beam emittance at the energy of 100 MeV/u with electron cooling system. The features of this booster, the requirement to the main synchrotron systems and their parameters are presented.

 
MOPD010 Lattice of the NICA Collider Rings 690
 
  • A.O. Sidorin, O.S. Kozlov, I.N. Meshkov, V.A. Mikhaylov, G.V. Trubnikov
    JINR, Dubna, Moscow Region
  • V.A. Lebedev, S. Nagaitsev
    Fermilab, Batavia
  • Y. Senichev
    FZJ, Jülich
 
 

Main element of the NICA facility is the collider equipped with stochastic and electron cooling systems to provide experiment with heavy ions like Au, Pb or U at energy from 1 to 4.5 GeV/u with average luminosity of the level of 1027 cm-2 s-1. The possible lattices providing the required parameters are discussed.

 
MOPD011 Project of the Nuclotron-Based Ion Collider Facility (Nica) at JINR 693
 
  • A.O. Sidorin, I.N. Meshkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region
  • A.D. Kovalenko
    JINR/LHE, Moscow
 
 

The Nuclotron-based Ion Collider fAcility (NICA) is the new accelerator complex being constructed at JINR aimed to provide collider experiments with heavy ions up to uranium at the center of mass energy from 4 to 11 GeV/u. It includes 6 Mev/u linac, 600 MeV/u booster, upgraded SC synchrotron Nuclotron and collider consisting of two SC rings, which provide average luminosity of the level of 1027cm-2s-1.

 
MOPD064 Bunched Beam Stochastic Cooling at COSY 834
 
  • T. Katayama
    GSI, Darmstadt
  • T. Kikuchi
    Nagaoka University of Technology, Nagaoka, Niigata
  • R. Maier, D. Prasuhn, R. Stassen, H. Stockhorst
    FZJ, Jülich
  • I.N. Meshkov
    JINR, Dubna, Moscow Region
 
 

The stochastic cooling is employed to reduce the momentum spread of accelerated 2 GeV proton beam at COSY. In addition the barrier voltages are successfully used to compensate the mean energy loss of the beam due to the thick internal target such as pellet target. To analyze the experimental results at COSY, we have developed the particle tracking code which simulate the particle behavior under the influences of stochastic cooling force, Schottky diffusion, thermal diffusion and IBS effects. The synchrotron motion due to the RF fields are included with 4th order symplectic way. The simulation results are well in agreement with the observed cooling process for the case of barrier voltage as well as RF field of harmonic number=1. In the present paper, the systematic analysis of the experimental results with use of the developed tracking codes are described. In addition the process of short bunch formation at the heavy ion collider at NICA project is investigated with use of the stochastic cooling. In that case the strong IBS effects are main limiting factor of making and keeping the short bunch as well as the space charge effects. Details of the simulation study will be presented.

 
MOPD065 Beam Accumulation with Barrier Voltage and Stochastic Cooling 837
 
  • T. Katayama, M. Steck
    GSI, Darmstadt
  • T. Kikuchi
    Nagaoka University of Technology, Nagaoka, Niigata
  • R. Maier, D. Prasuhn, R. Stassen, H. Stockhorst
    FZJ, Jülich
  • I.N. Meshkov
    JINR, Dubna, Moscow Region
 
 

Anti-proton beam accumulation at CERN and FNAL has been performed with use of stochastic stacking in the momentum space. Thus accumulated beam has a large momentum spread and resultantly large radial beam size with large dispersion ring. In the present proposed scenario, beams from the pre-cooling ring are injected into the longitudinal empty space prepared by the barrier voltages and subsequently the stochastic cooling is applied. After the well cooling, barrier voltages will prepare again the empty space for the next beam injection. We have simulated the stacking process up to 100 stacking with use of the bunched beam tracking code including the stochastic cooling force and the diffusion force such as Schottky diffusion term, thermal diffusion, IBS effects. The synchrotron motion by barrier voltages are included with 4th order symplectic method. Examples of the application to 3 GeV anti-proton beam for the HESR ring in FAIR project are presented as well as the accumulation of heavy ion beam 3.5 GeV/u Au, at the NICA collider at JINR project.

 
MOPD093 Nondestructive Beam Instrumentation and Electron Cooling Beam Studies at COSY 921
 
  • V. Kamerdzhiev, J. Dietrich
    FZJ, Jülich
  • C. Böhme
    UniDo/IBS, Dortmund
  • T. Giacomini
    GSI, Darmstadt
  • A.G. Kobets, I.N. Meshkov, A.Yu. Rudakov, A.O. Sidorin
    JINR, Dubna, Moscow Region
 
 

To study electron cooling in a synchrotron nondestructive methods only are suitable. The ionization profile monitor (IPM) delivers real-time data in both transverse planes allowing detailed analysis of beam profile evolution in COSY. First attempts to use scintillation of residual gas (SPM) to measure beam profiles were very promising. Beam diagnostics based on recombination is usually used to optimize electron cooling of protons (H0-diagnostics). However, it is not available when cooling antiprotons. So the IPM and possibly the SPM are vital for electron cooling optimization in the HESR ring. The new beam instrumentation at COSY is introduced and its relevance for the new 2 MeV electron cooler project and the HESR are discussed. Results of beam studies performed during electron cooling beam times at COSY are presented.

 
TUZRA02 Accelerator Applications for Basic and Applied Research at JINR 1319
 
  • I.N. Meshkov, A.N. Sissakian, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

This presentation will describe the accelerators - basic facilities at JINR and briefly discuss research programs for applications and basic research, which are performed at these accelerators.

 

slides icon

Slides

 
MOPD008 Status of the Nuclotron. 'Nuclotron-M' project 684
 
  • A.O. Sidorin, N.N. Agapov, V. Batin, A.V. Butenko, D.E. Donets, A.V. Eliseev, A. Govorov, V. Karpinsky, V.D. Kekelidze, H.G. Khodzhibagiyan, A. Kirichenko, O.S. Kozlov, I.N. Meshkov, V.A. Mikhaylov, V. Monchinsky, S. Romanov, V. Shevtsov, A.N. Sissakian, I. Slepnev, V. Slepnev, G.V. Trubnikov, B. Vasilishin, V. Volkov
    JINR, Dubna, Moscow Region
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
  • O.I. Brovko, A.D. Kovalenko
    JINR/LHE, Moscow
 
 

The 'Nuclotron-M' project started in 2007 is considered as the key point of the first stage of the NICA/MPD project. General goal of the 'Nuclotron-M' project is to prepare all the systems of the Nuclotron for its long and reliable operation as a part of the NICA collider injection chain. Additionally the project realization will increase the Nuclotron ability for realization of its current experimental program. Results of the last runs of the Nuclotron operation are presented.

 
MOPD009 Injector Complex of the NICA Facility 687
 
  • A.O. Sidorin, A.V. Butenko, E.D. Donets, E.E. Donets, V.V. Fimushkin, A. Govorov, V. Kobets, I.N. Meshkov, V. Monchinsky, G.V. Trubnikov
    JINR, Dubna, Moscow Region
  • A. Belov
    RAS/INR, Moscow
  • O.K. Belyaev, Yu.A. Budanov, A.P. Maltsev, I.A. Zvonarev
    IHEP Protvino, Protvino, Moscow Region
  • V.V. Kapin
    MEPhI, Moscow
 
 

The injector complex of the NICA facility consists of existing Alvarez-type linac LU-20 and new heavy ion linac HILac. The LU-20 is under modernization now, the HILac will be constructed during coming years. Parameters of the accelerators are presented.

 
WEPE018 ILC Siting in Russia, Dubna Region and ILC Related Activity at JINR 3383
 
  • G. Shirkov, Ju. Boudagov, Yu.N. Denisov, A. Dudarev, I.N. Meshkov, B.M. Sabirov, A.N. Sissakian, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

The investigations on ILC siting in the Dubna region and ILC technical activity at JINR are presented. International intergovernmental status of JINR, stable geological and plain relief conditions, comfortable location and well developed infrastructure create a set of advantages of the JINR site in the neighborhood of Dubna. The shallow layout of accelerator tunnel makes it possible to use a communication gallery at the surface instead of second one. This is an effective way of significant cost reduction of all conventional facilities and explicit labor of the project. The results of the preliminary geological engineering surveys along the supposed route of the ILC in Dubna area of Moscow region are presented.