Paper | Title | Page |
---|---|---|
MOPEB009 | Low Leakage Field Septa for J-PARC Main Ring Injection System Upgrade | 295 |
|
||
Injection into the J-PARC main ring is implemented by 4 kickers and 2 pulsed septa at 3 GeV in a long straight section. To accommodate the injection beam of 54 pmm.mrad, both septa have large physical acceptance of 81 pmm.mrad. However, large aperture leads to large end fringe field interfereing the circulating beam and causing beam loss, which has been observed even at low beam intensity during the beam commissioning. To provide users a proton beam with high beam power, the injection beam intensity will increase greatly in future, which creates difficulties for the present injection system. To accommodate these high intensity beams with low beam loss, the injection system needs to be upgraded. Taking account the strong space charge effects, even larger physical is needed to reduce the localized beam loss, which creates severer end fringe leakage field. This paper will discuss the problems encountered in operating the present septa, and give an optimized design for the new septa. |
||
MOPEB010 | Development of a High Radiation Resistant Septum for JPARC Main Ring Injection System | 298 |
|
||
The J-PARC is a high intensity proton accelerator complex, which consists of a LINAC, a Rapid Cycling Synchrotron (RCS) and a Main Ring (MR). The MR injection system employs a high-field septum to deflect the incoming beam from the RCS, which has been used for the beam commissioning study with low beam intensity successfully. Relative large beam losses in the injection area have been observed, which is proportional to the injection beam intensity. In future, the beam intensity will increase about 100 times to realize high beam power (~MW) operation required from neutrino experiments. The beam loss at the injection region is expected increase greatly due to the space charge effects, which creates severe radiation problems. Since the present injection septum coil is organic insulated, which will be destroyed under such a severe irradiation quickly. To cope with this problem, a new high radiation resistant injection septum magnet is developed, which uses inorganic insulation material (Mineral Insulated Cable - MIC) to prevent the septum from radiation damage. This paper investigates different effects caused by the MIC and gives an optimization design. |
||
MOPEC064 | J-PARC Accelerator Complex Construction | 612 |
|
||
The J-PARC accelerator complex consists of a linear accelerator (330 m long, 181 MeV), a rapid cycling synchrotron (3 GeV RCS, 350 m circumference, 25 Hz) and a slow cycling synchrotron (MR, 30 GeV as a first step energy, 1600 m circumference, typically with 3.5 sec cycle). The RCS provides high intensity proton beam to the materials and life science facility and the MR. The MR has two beam extraction lines. One is a slow extraction system for the hadron physics, and other a fast extraction system for neutrino science. We have to challenge many issues to complete construction of the J-PARC accelerator facility on-schedule in 2008 despite all the hardships, such as the problems included in the original design, technology choices and fabrication procedure of the machine components, and construction of conventional facilities. As a first step of operation, we could commission all accelerator facilities and provide beam to all experimental facilities in 2009 successfully. We will report about analysis of these issues and how to solve them, which is a necessary step to realize the design beam power as a next step, and to challenge the future upgrade beyond the original design. |
||
MOPEC067 | Status of the J-PARC RFQ | 621 |
|
||
The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a beam from the ion source to the DTL. The beam test of the linac was started in November 2006 and 181 MeV beam was successfully accelerated in January 2007. Since then, the linac has been delivered beams for commissioning of the linac itself, downstream accelerators and facilities. Trip rates of the RFQ, however, unexpectedly increased in Autumn 2008, and we have been suffering from this issue for user run operation since then. We tried to recover by tender conditioning, modification of RF control, improvement of vacuum properties and so on. By taking these measures, we manage to have 2 to 3 days continuous beam operation. In this report, we describe the status of the RFQ. |
||
MOPD043 | Thermal Characteristics of a New RFQ for J-PARC | 780 |
|
||
A new RFQ for the J-PARC linac is under construction for more stable operation. The requirement of this RFQ is almost same as the now-operating one; the resonant frequency is 324MHz, the injection energy is 50 keV, the extraction energy is 3 MeV, peak beam current is 30 mA, and RF duty is 1.5%. The resonant frequency tuning during operation will be done by adjusting the temperatures of the cooling waters. In this paper, thermal characteristics of this RFQ and control system of the cooling water temperature is described. |
||
MOPD044 | Fabrication of the New RFQ for the J-PARC Linac | 783 |
|
||
The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a negative hydrogen beam from 0.05MeV to 3MeV toward the following DTL. As the trip rates of the practically using RFQ increased in autumn 2008, we started the preparation of a new RFQ as a backup machine. The beam dynamics design of the new RFQ is the same as the current cavity, however, the engineering and RF designs are changed. The processes of the vane machining and the surface treatments have been carefully considered to reduce the discharge problem. The vacuum brazing technique has been chosen for vane integration. In this report, the detailed design will be described with the progress of the fabrication of the new RFQ. |
||
MOPE012 | Performance of the Main Ring BPM during the Beam Commissioning at J-PARC | 981 |
|
||
Experiences of operating BPM's during beam commissioning at the J-PARC MR are reported. The subjects are: (1) bug report, statistics and especially the effect of a beam duct step, (2) position resolution estimation (<30 micrometers with 1 sec averaging), (3) beam based alignment. |
||
THPEA081 | Vacuum Surface Scrubbing by Proton Beam in J-PARC Main Ring | 3858 |
|
||
In J-PARC 50GeV synchrotron ring, large vacuum pressure rises above 10-3 Pa are found at 30GeV acceleration final stage of intensity over 1013 protons per pulse in the chambers of the in-vacuum electrostatic septum magnet for the slow-extraction(SX), magnetic septum for SX, and the kicker magnet for the fast-extraction. This pressure rise depends on beam intensity and peak-current, and can be reduced by continuous beam operations, such as scrubbing with proton beam, secondary emission electrons and other cations of remaining gasses or desorptions. |