Paper | Title | Page |
---|---|---|
MOPE002 | Deflecting Cavity for Bunch Length Diagnostics at Compact ERL Injector | 951 |
|
||
Energy Recovery Linac (ERL) as synchrotron light source is planned to construct in KEK. Before the construction of full-set of ERL, compact ERL to study the accelerator technologies will be constructed. For the injector, a high voltage photoemission gun with DC operation and measurement systems for the low emittance beam will be developed. In order to observe bunch length and longitudinal beam profile, we have designed a single-cell deflecting cavity with 2.6 GHz dipole mode. We describe the optimization of the cavity, mechanical design and the measurements results with simulation. |
||
TUPE090 | Progress in Construction of Gun Test Facility for Compact ERL | 2335 |
|
||
Compact ERL (cERL) is a test accelerator to establish accelerator technologies for GeV-class synchrotron light source based on ERL (Energy Recovery Linac), and will be constructed in KEK. It consists of an injector with photo cathode 500 kV DC gun, a merger section, super conducting RF cavities for acceleration and energy recovery, return loops, and a beam dump. To operate and test the photo cathode gun before installing it in the cERL injector, Gun Test Facility is constructing in KEK, AR south experimental hall. The Gun Test Facility has two photo cathode guns, 200 kV gun developed by Nagoya University and new 500 kV gun which is being developed, laser system to be emitted electrons from photo cathode surface, beam transport lines, and a beam diagnostics system. The diagnostics system consists of a double slit emittance measurement system, beam position monitors, transverse profile monitors, and a deflecting cavity to measure the bunch length and the longitudinal profile. In this presentation, the progress in the construction of the Gun Test Facility and the beam dynamics simulation will be presented. |
||
TUPE091 | Recent Progress in the Energy Recovery Linac Project in Japan | 2338 |
|
||
Future synchrotron light source using a 5-GeV-class energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting active R&D efforts for that. We are developing super-brilliant DC photocathode guns, two types of cryomodules for both injector and main superconducting linacs, 1.3 GHz high CW-power rf sources, and other important components. We are also constructing a compact ERL for demonstrating the recirculation of low-emittance, high-current beams using those key components. We present our recent progress in this project. |
||
WEPD027 | Tuning of the Fast Local Bump System for Helicity Switching at the Photon Factory | 3150 |
|
||
The fast local bump system for the helicity switching of variably polarizing undulators has been developed at the Photon Factory ring. The system consists of two APPLE-II type variably polarizing undulators and five identical horizontal kicker magnets for local bump with four small corrector magnets to prevent the leakage of the bump. At present, one undulator and the local bump system with corrector magnets are installed. For beam test, the system was operated with frequency up to 50 Hz with feed forward correction. In this presentation, after brief description of the system configuration, the results of the test operation and fine tunings of the fast local bump system are shown. |