Paper | Title | Page |
---|---|---|
WEPEB035 | The Clic Drive Beam Phase Monitor | 2764 |
|
||
In the two beam acceleration scheme the Main Beam must be precisely synchronized with respect to the RF power produced by the Drive Beam. Timing errors would have an impact on the collider performances. The Drive Beam phase errors should be controlled, by means of a feed forward system, within 0.1° (23fs @ 12GHz) to avoid a luminosity reduction larger than 2%. A beam phase arrival monitor is an essential component of the system. Its design has been based on the following main requirements: resolution of the order of 20fs, very low coupling impedance due to the very high beam current and integrated filtering elements to reject RF noise and weak fields in the beam pipe that could otherwise affect the measurements. |
||
TUPEB003 | The SuperB Project Accelerator Status | 1518 |
|
||
The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the B mesons cm energy. The accelerator design has been extensively studied and changed during the past year. The present design, - based on the new collision scheme, with large Piwinski angle and the use of 'crab' sextupoles, which has been successfully tested at the DAPHNE Phi-Factory at LNF Frascati, - provides larger flexibility, better dynamic aperture and in the Low Energy Ring spin manipulation sections, needed for having longitudinal polarization of the electron beam at the Interaction Point. The Interaction Region has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the design status, including details on lattice and spin manipulation will be presented in this paper. |
||
TUPEB006 | DAΦNE Developments for the KLOE-2 Experimental Run | 1527 |
|
||
Recently the peak luminosity achieved on the DAΦNE collider has been improved by almost a factor 3 by implementing a novel collision scheme based on large Piwinski angle and Crab-Waist. This encouraging result opened new perspectives for physics research and a new run with the KLOE-2 detector has been scheduled to start by spring 2010. The KLOE-2 installation is a complex operation requiring a careful design effort and a several months long shutdown. The high luminosity interaction region has been deeply revised in order to take into account the effect on the beam caused by the solenoidal field of the experimental detector and to ensure background rejection. The shutdown has been also used to implement several other modifications aimed at improving beam dynamics: the wiggler poles have been displaced from the magnet axis in order to cancel high order terms in the field, the feedback systems have been equipped with stronger power supplies and more efficient kickers and electrodes have been inserted inside the wiggler and the dipole vacuum chambers, in the positron ring, to avoid the e-cloud formation. A low level RF feedback has been added to the cavity control in both rings. |
||
THPEA006 | Beam Energy Upgrade of the Frascati FEL LINAC with a C-band RF System | 3682 |
|
||
In the frame of the SPARC-X project, the energy of the Photo-Injector SPARC, in operation at INFN-LNF, will be upgraded from 180 to 250 MeV by replacing a low gradient S-band traveling wave accelerating section with two C-band units, designed and developed at LNF. The new system will consist of a 50 MW klystron, supplied by a pulsed modulator, to feed the high gradient C-band structures through a RF pulse compressor. This paper deals with the design of the full system, the C-band R&D activity and study of the related beam dynamics. |