A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lucas, J.M.

Paper Title Page
WEPE092 Mechanical and Vacuum Design of the Wiggler Section of the ILC Damping Rings 3563
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A vac­u­um ves­sel de­sign of wig­gler sec­tions should meet a few chal­leng­ing spec­i­fi­ca­tion. The SR power of about 40 kW is gen­er­at­ed in each wig­gler. Ex­pand­ing fan of SR ra­di­a­tion reach­es the beam vac­u­um cham­ber walls in the fol­low­ing wig­gler and may cause the fol­low­ing prob­lem: mas­sive power dis­si­pa­tion on vac­u­um cham­ber walls in­side the cryo­genic ves­sel, ra­di­a­tion dam­age of su­per­con­duct­ing coil, high pho­to-elec­tron pro­duc­tion rate that cause an e-cloud build-up to un­ac­cept­able level. There­fore this power should be ab­sorbed in the places where these ef­fects are tol­er­a­ble or man­age­able. A few pos­si­ble so­lu­tions for tack­ling all SR re­lat­ed prob­lems as well as vac­u­um de­sign are dis­cussed in the paper in de­tails.

 
WEPE094 SR Power Distribution along Wiggler Section of ILC DR 3569
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A 374-m long wig­gler sec­tion is a key part of ILC damp­ing ring that should alloy reach­ing a low beam emit­tance for the ILC ex­per­i­ment. Syn­chrotron ra­di­a­tion gen­er­at­ed by the beam in the wig­glers should be ab­sorbed by dif­fer­ent com­po­nents of vac­u­um ves­sel, in­clud­ing spe­cial­ly de­signed ab­sorbers. The op­ti­mi­sa­tion of the me­chan­i­cal de­sign, vac­u­um sys­tem and an­ti-e-cloud mit­i­ga­tion re­quires ac­cu­rate cal­cu­la­tion of the SR power dis­tri­bu­tion. The an­gu­lar power dis­tri­bu­tion from a sin­gle wig­gler was cal­cu­lat­ed with in-house de­vel­oped soft­ware. Then the su­per­po­si­tion of SR from all wig­glers al­lows cal­cu­lat­ing power dis­tri­bu­tion for all com­po­nents along the wig­gler sec­tion and the down­stream straight sec­tion.

 
WEPE095 Impedance and Single-bunch Instabilities in the ILC Damping Ring 3572
 
  • M. Korostelev, O.B. Malyshev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • A.J.P. Thorley
    The University of Liverpool, Liverpool
 
 

The lon­gi­tu­di­nal wake fields have been cal­cu­lat­ed by using 3D code, CST Par­ti­cle Stu­dio, for a num­ber of dif­fer­ent vac­u­um cham­ber com­po­nents of the 6.4 km ILC damp­ing ring de­sign. Based on the re­sults, stud­ies of bunch length­en­ing and sin­gle-bunch in­sta­bil­i­ties have been car­ried out. Bunch length­en­ing from a par­ti­cle track­ing code are com­pared with re­sults from nu­mer­i­cal so­lu­tion of the Haissin­s­ki equa­tion. The track­ing code is used to pre­dict the thresh­old for sin­gle-bunch in­sta­bil­i­ties.