Paper | Title | Page |
---|---|---|
MOPEA075 | GEANT4 Validation Studies at the ISIS Muon Facility | 247 |
|
||
GEANT4 provides an extensive set of alternative hadronic models. Simulations of the ISIS muon production using three such models applicable in the energy range of interest are presented in this paper and compared with the experimental data. |
||
MOPEA076 | Geometry Optimization of the ISIS Muon Target | 250 |
|
||
ISIS is the world's most successful pulsed spallation neutron source that provides beams of neutrons and muons that enable scientists to study the properties of the matter at the atomic level. Restrictions are imposed on the muon target regarding thickness as this will affect the proton transmission to the second neutron target. However, it could be possible to improve the muon production by optimizing the target geometry. Currently the muon target is a 7 mm thick graphite plate oriented at 45 degrees with respect to the proton beam. A set of slabs placed at variable distance is proposed instead of the 7 mm thick graphite target. The performance of the set of slabs is examined in this paper. |
||
MOPEA077 | Material Studies for the ISIS Muon Target | 253 |
|
||
The ISIS neutron spallation source uses a separate muon target 20 m upstream of the neutron target for MuSR research. Because ISIS is primarily a neutron source, it imposes restrictions upon the muon target, which normally are not present at other muon facilities like PSI or TRIUMF. In particular it is not possible to use thicker targets and higher energy proton drivers because of the loss of neutrons and the increased background at neutron instruments. In this paper we investigate possible material choices for the ISIS muon target for increased muon yield. |
||
MOPEA079 | Impact of the Energy of the Proton Driver on Muon Production | 259 |
|
||
Simulations studies have been carried out to examine the impact of the energy of the proton driver on muon production. The muon flux is calculated as a function of proton energy over a wide range, which covers the energies at the existing muon and neutron facilities worldwide. The muon and higher energy pion yields are normalised per beam current and accelerator power. The case of a higher energy of the proton driver at the ISIS muon facility is also examined. |