Paper | Title | Page |
---|---|---|
TUPD028 | Fast Beam-ion Instability Studies at SOLEIL | 1985 |
|
||
Ever since the commissioning times, transverse instabilities, which now have been identified as the so called Fast Beam-Ion Instability (FBII), have existed in the SOLEIL storage ring. Though along with the improvement of the vacuum level with increasing beam dose its relative importance has decreased to a large extent as compared to the classical instabilities due to the coupling impedance, the FBII still exists persistently at high current, making it difficult to attain a stable beam at the final goal of 500 mA. In particular, sudden beam losses are frequently encountered after keeping the beam stable over a certain time with transverse feedback at the final current, which raised a question as to whether the observed phenomena are compatible with the saturating effect of the FBII. Experimental analysis using the bunch by bunch feedback diagnostics as well as theoretical and numerical analysis using multibunch tracking have been carried out to understand the instability quantitatively and to elucidate the mechanism of the beam losses. |
||
WEPEA010 | Operation and Performance Upgrade of the SOLEIL Storage Ring | 2493 |
|
||
The SOLEIL synchrotron light source is now delivering photons to 20 beamlines with a current of 400 mA in top-up mode. The long and short term H and V beam position stabilities are in the range of one micron thanks to the efficient slow and fast orbit feedbacks, and to the improved tunnel temperature regulation. The bunch by bunch transverse feedback is running with two independent H and V loops. To enable canted undulator implementations, a 3 magnet chicane has been installed in a medium straight whereas an additional triplet of quadrupole was inserted in the middle of a long straight to create a double low vertical beta. 17 insertion devices are now installed in the storage ring, 2 will be added early 2010, 8 are under construction, including a cryogenic undulator. Following the significant progression of the vacuum conditioning, the lifetime is now mainly Touchek limited. An electron bunch slicing set-up is also being installed to provide 100 fs long X-rays pulses to two existing beamlines. ~4500 hours will have been delivered in 2009 to the Beamlines with an availability above 96 % thanks to the very reliable operation of the unique SOLEIL RF system. |
||
WEPEB029 | Operational Status of the Transverse Bunch by Bunch Feedback System at SOLEIL | 2746 |
|
||
In this paper we introduce and discuss the recent developments made in our digital transverse bunch by bunch feedback system at SOLEIL, which is routinely in service since the first user operation in both the high average current and high bunch current modes. The above includes installation of a third chain with a dedicated 4-electrode stripline intended to operate in the horizontal plane, an attempt to sample the BPM signal directly at the RF frequency without down-converting to the baseband following the success at SPring-8, a refined tuning procedure by measuring the feedback damping times as a function of the band frequency, as well as exploration of different digital filters ensuring a larger working range in terms of betatron tunes or a faster response against single bunch instabilities. The achieved performance and results are described. The observed evolution of the machine impedance and instabilities shall also be presented. |