Paper | Title | Page |
---|---|---|
THPEC084 | Crystal Collimation Efficiency Measured with the Medipix Detector in SPS UA9 Experiment | 4252 |
|
||
The UA9 experiment was performed in 6 MDs from May to November 2009 with the goal of studying the collimation properties of a crystal in the framework of a future exploitation in the LHC collimation system. An important parameter evaluated for the characterization of the crystal collimation is the efficiency of halo extraction when the crystal is in channeling mode. In this paper it is explained how this efficiency can be measured using a pixel detector, the Medipix, installed in the Roman Pot of UA9. The number of extracted particles counted by the Medipix is compared with the total number of circulating particles measured by the Beam Current Transformers (BCTs): from this comparison the efficiency of the system composed by the crystal, used in channeling mode, and a tungsten absorber is proved to be greater than 85%. |
||
THPEC085 | Beam-beam Effect for the LHC Phase I Luminosity Upgrade | 4255 |
|
||
The Phase I Luminosity Upgrade of LHC (SLHC) will be based on a new Nb-Ti inner triplet for the high luminosity region ATLAS and CMS. The new proposed layout aims at pushing beta* down to 30 cm replacing the current LHC inner triplet, with longer ones operating at lower gradient (123 T/m) and therefore offering enough aperture for the beam to reduce beta* to its prescribed value. As a consequence of this new longer interaction region, the number of parasitic encounters will increase from 15 to 21 before the separation dipole D1, with an impact on the dynamic aperture of the machine. In this paper the effect of the beam-beam interaction is evaluated for the SLHC layout and optics, at injection and in collision, evaluating the possible impact of a few additional parasitic collisions inside and beyond the D1 separation dipole till the two beams do no longer occupy the same vacuum chamber. Whenever needed, a comparison with the nominal LHC will be given. Then a possible backup collision optics will be discussed for the SLHC, offering a much wider crossing angle at an intermediate beta* of 40 cm in order to reach a target dynamic aperture of 7.5 σ. |