A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kwan, J.W.

Paper Title Page
THPEC074 High Current Density Lithium Ion Source 4229
 
  • R. Sah, A. Dudas, M.L. Neubauer
    Muons, Inc, Batavia
  • J.W. Kwan
    LBNL, Berkeley, California
 
 

Induction linear accelerators are featured in accelerator-based research currently supported by the Office of Fusion Energy Sciences. Over the next few years, the research will concentrate on developing intense ion sources and on studying the physics of spatial compression, neutralized transport, and focusing of the beam. The large diameter of lithium alumino-silicate ion emitters for large currents represents the current state of the art for emission densities of 1-1.5 mA/cm2. Also, operating temperatures of the surface are limited by the temperature of alumina-potted heater packages. We propose a novel system for increasing the emission of lithium ions from β-eucryptite through modification of the surface morphology by sputter etching with argon plus other gases. The resulting local field enhancement will increase the ion emission over that of a microscopically flat surface. In addition, a free-standing graphite heater assembly will be used to increase the temperature of the surface of the emission source.