Paper | Title | Page |
---|---|---|
WEOBMH01 | Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size | 2383 |
|
||
The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances * Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303. |
||
|
||
WEOBMH02 | Multi-bunch Beam Extraction using Strip-line Kicker at KEK-ATF | 2386 |
|
||
The beam extraction experiment using the strip-line kicker has been carried out at KEK-ATF. The specification of the International linear collider (ILC) is that the long bunch train (1320 - 5120 bunches), which has the bunch spacing of 189 - 480ns, is compressed to 3 or 6ns bunch spacing into the DR, and again decompressed from the DR. The kicker manipulates the changes of the bunch spacing. The kicker requires a fast rise/fall time (3 or 6ns) and a high repetition rate (3 or 6MHz). A multiple strip-line kicker system is the most promising candidate to realize the specification for the ILC*. The beam extraction experiment at KEK-ATF** using proto-type of the strip-line kicker was done by following parameters, up to 30 bunches of the multi-bunch in the DR, which has 5.6ns bunch spacing, are extracted bunch-by-bunch with 308ns interval to the extraction line. The stored multi-bunch was extracted successfully. The detail of the experiment and the result are reported. * T. Naito et. al., Proc. of PAC07, pp2772-2274. |
||
|
||
TUYMH02 | Electron Cloud at Low Emittance in CesrTA | 1251 |
|
||
The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed. |
||
|
||
WEPE007 | Simulation Study of Scale Error Effect of BPM in ILC Main Linac Corrections | 3353 |
|
||
For preserving low emittance beam in the ILC (International Linear Collider) main linacs, Dispersion Matching Steering (DMS) is planed to be used as a main correction method. The linacs are following the earth's curvature and the designed vertical dispersion in the linacs should not be zero. For this reason, the orbit difference due to beam energy difference will have to be measured accurately and tolerance of scale error of beam position monitors (BPM) can be tight. Here, the tolerance of the scale error are estimated by tracking simulations. Choice of optics design for relaxing the tolerance is also discussed. |
||
WEPE041 | A Superconducting Magnet Upgrade of the ATF2 Final Focus | 3440 |
|
||
The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence. * ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html |