A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Konecny, R.

Paper Title Page
THPD062 Argonne Wakefield Accelerator Facility (AWA) Upgrades 4425
 
  • M.E. Conde, S.P. Antipov, W. Gai, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
 
 

The AWA Facility is dedicated to the study of advanced accelerator concepts based on electron beam driven wakefields. The facility employs an L-band photocathode RF gun to generate high charge short electron bunches, which are used to drive wakefields in dielectric loaded structures, as well as in metallic structures. Accelerating gradients as high as 100 MV/m have been reached in dielectric structures, and RF pulses of up to 44 MW have been generated at 7.8 GHz. In order to reach higher accelerating gradients and higher RF power levels, several upgrades are underway: (a) a new RF gun with higher QE photocathode will replace the present drive gun; (b) the existing RF gun will generate a witness beam to probe the wakefields; (c) three new 25 MW L-band RF power stations will be added to the facility; (d) five additional linac structures will bring the beam energy up from 15 MeV to 75 MeV. The drive beam will consist of bunch trains of up to 32 bunches, with up to 60 nC per bunch. The goal of future experiments is to reach accelerating gradients of several hundred MV/m and to extract RF pulses with GW power level.

 
THPD067 The First Experiment of a 26 GHz Dielectric Based Wakefield Power Extractor 4434
 
  • C.-J. Jing, F. Gao, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • M.E. Conde, W. Gai, R. Konecny, J.G. Power
    ANL, Argonne
 
 

High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. We have developed a 26GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. The first high beam experiment has been performed at Argonne Wakefield Accelerator facility. The experimental results successfully demonstrate the 15ns 26GHz rf pulse generated from the wakefield extractor with a bunch train of 16 bunches. Meanwhile, ~ 30MW short rf pulse has been achieved with a bunch train of 4 bunches. Beam Breakup has prevented charge transport through the power extractor beyond 10nC. We are doing simulations and developing methods to alleviate the BBU effect.