Paper | Title | Page |
---|---|---|
MOPEC067 | Status of the J-PARC RFQ | 621 |
|
||
The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a beam from the ion source to the DTL. The beam test of the linac was started in November 2006 and 181 MeV beam was successfully accelerated in January 2007. Since then, the linac has been delivered beams for commissioning of the linac itself, downstream accelerators and facilities. Trip rates of the RFQ, however, unexpectedly increased in Autumn 2008, and we have been suffering from this issue for user run operation since then. We tried to recover by tender conditioning, modification of RF control, improvement of vacuum properties and so on. By taking these measures, we manage to have 2 to 3 days continuous beam operation. In this report, we describe the status of the RFQ. |
||
MOPD043 | Thermal Characteristics of a New RFQ for J-PARC | 780 |
|
||
A new RFQ for the J-PARC linac is under construction for more stable operation. The requirement of this RFQ is almost same as the now-operating one; the resonant frequency is 324MHz, the injection energy is 50 keV, the extraction energy is 3 MeV, peak beam current is 30 mA, and RF duty is 1.5%. The resonant frequency tuning during operation will be done by adjusting the temperatures of the cooling waters. In this paper, thermal characteristics of this RFQ and control system of the cooling water temperature is described. |
||
MOPD044 | Fabrication of the New RFQ for the J-PARC Linac | 783 |
|
||
The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a negative hydrogen beam from 0.05MeV to 3MeV toward the following DTL. As the trip rates of the practically using RFQ increased in autumn 2008, we started the preparation of a new RFQ as a backup machine. The beam dynamics design of the new RFQ is the same as the current cavity, however, the engineering and RF designs are changed. The processes of the vane machining and the surface treatments have been carefully considered to reduce the discharge problem. The vacuum brazing technique has been chosen for vane integration. In this report, the detailed design will be described with the progress of the fabrication of the new RFQ. |