Paper | Title | Page |
---|---|---|
MOPEA065 | DPIS for Warm Dense Matter | 226 |
|
||
Warm Dense Matter (WDM) is an challenging problem because WDM, which is beyond ideal plasma, is low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams (~ 0.3 MeV/amu) can be useful tool for WDM physics*, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linac directly without the beam transport line. The discussions of DPIS for WDM are presented. * L. R. Grisham, Physics of Plasmas, 11, 5727 (2004). |
||
THPEC054 | Angular Distribution of Laser Ablation Plasma | 4179 |
|
||
In a laser ion source, a high power pulsed laser shot focused on a solid state target produces laser ablation plasma. This plasma has initial velocity towards the normal direction of the target and simultaneously expands three dimensionally. Since charge state distribution, velocity distribution and plasma temperature strongly depends on laser power density, power density is one of the important parameter to the angular distribution of plasma. Angular distribution of expanding plasma was measured by changing laser power density. Details of the experiment will be shown in the paper. |
||
THPEC062 | LIS in Low Power Density for RHIC-EBIS | 4197 |
|
||
The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory is a new heavy ion pre-injector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. An important requirement for EBIS is an ion source capable of efficiently providing a variety of heavy ion species to many users within short period of time. In that respect, Laser Ion Source (LIS), which can supply many heavy ion species from solid targets, is a good candidate for RHIC-EBIS, however, LIS has an issue to be resolved. This is the requirement of limited current in low energy beam transport. LIS in the condition that laser power density is low, is expected to provide limited current with long pulse length. The discussions of the experimental results are presented. |
||
THPEC076 | Ion Generation via a Laser Ion Source with Hot Target | 4232 |
|
||
The Laser Ion Source is an efficient method for generating heavy ions for acceleration. The output produces high current and high charge-state beams from almost any type of elemental species. Using the Laser Ion Source apparatus, we consider improving the efficiency of this method by heating the target prior to laser irradiation. Prior deposition of any thermal energy into the target could add with the energy being delivered by the pulsed laser to produce higher current beams. These beams could be composed of higher charge-state ions and/or an increased net number of ions. We investigate by using a retrofitted heater to heat the target to a variety of high temperatures and subsequently analyze the produced beam. |
||
THPEC077 | Confinement of Laser Plasma by Solenoidal Field for Laser Ion Source | 4235 |
|
||
A laser ion source can provide high-current highly-charged ions with a simple structure. Previously we have demonstrated acceleration of >60 mA carbon and aluminum ion beams using a direct plasma injection scheme. However, it was not easy to control the ion pulse width. Especially to provide longer ion pulse, a plasma drift length which is the distance between laser target and extraction point, has to be extended and the plasma is diluted severely. We apply a solenoid field to prevent reduction of ion density at the extraction point. A solenoid field of a few hundred Gauss enhanced the ion density up to 40 times. We present these results, including details of the solenoidal field effects on the expanding laser plasma. |
||
MOPEA013 | Laser-driven Proton Accelerator for Medical Application | 88 |
|
||
The interaction between the high intensity laser and the solid target produces a strong electrostatic proton acceleration field (1 TV/m) with extraordinary small size, contributing to downsizing of the particle accelerator. The proton beam exhibits significant features. having very small source size(~10 um), short pulse duration (~ps) and very low transverse emittance. However it is a diverging beam (half angle of ~10 deg) with wide energy spread of ~100 %. Because of these peculiar characteristics the proton beam attracts many fields for applications including medical applications. To preserve these peculiar characteristics, which are not possessed by those beams from the conventional accelerators, towards the irradiation points, we need to establish a peculiar beam transport line. As the first step, here we report the demonstration of the proto-type laser-driven proton medical accelerator beam line in which we combine the laser-driven proton source with the beam transport technique already established in the conventional accelerator for the purpose of comparison between the data and the particle transport simulation code, PARMILA*. *Harunori Takeda, 2005, Parmila LANL (LA-UR-98-4478). |
||
MOPEA015 | Calculation of Radiation Shielding for Laser-driven Hadron Beams Therapeutic Instrument | 94 |
|
||
The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven hadrons acceleration. The Photo Medical Research Centre (PMRC) of JAEA was established to address the challenge of laser-driven ion accelerator development for hadrons therapeutic. In the development of the instrument, it is necessary to do the bench-mark of the amount of the different types of radiation by the simulation code for shielding. The Monte Carlo Particle and Heavy Ion Transport code (PHITS) was used for bench-mark the dose on laser-shot radiations of short duration. The code predicts reasonably well the observed total dose as measured with a glass dosimeter in the laser-driven radiations. |
||
THPEC003 | Stabilization of Laser Accelerated Electron Bunch by the Ionization-stage Control | 4062 |
|
||
The pointing stability and the divergence of a quasi-monoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime were investigated. Gas-jet targets have been irradiated with focused 40 fs laser pulses at the 4-TW peak power. A pointing stability of 2.4 mrad root-mean-square (RMS) and a beam divergence of 10.6 mrad (RMS) were obtained using argon gas-jet target for 50 sequential shots, while these values were about three times smaller than at the optimum condition using helium. In particular, the peak electron energy was 9 MeV using argon, which is almost three times lower than that using helium. This result implies that the formation of the wake-field is different between argon and helium, and it plays an important role in the generation of a electron bunch. This stabilization scheme is available for another gas material such as nitrogen. At nitrogen gas-jet target, the pointing stability is more improved to 1.4 times smaller (1.7 mrad (RMS)) than that in argon gas-jet target and the peak energy is increased to grater than 40 MeV. These results prove that this method not only stabilize the e-beam but also allows controlling the electron energy. |
||
THPD039 | Proton Generation Driven by a High Intensity Laser Using a Thin-foil Target | 4366 |
|
||
High-intensity laser and thin-foil interactions produce high-energy particles, hard x-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. We have performed the high intensity laser-matter interaction experiments using a thin-foil target irradiated by Ti:sapphire laser (J-KAREN) at JAEA. In this laser system, the pulse duration is 40 fs (FWHM). The laser beam is focused by an off-axis parabolic mirror at the target. The estimated peak intensity is ~5x1019 W/cm2. We have developed on-line real time monitors such as a time-of-flight proton spectrometer which is placed behind the target and interferometer for electron density profile measurement of preformed plasma. We observed the maximum proton energy of ~7 MeV. |