A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Komiyama, M.

Paper Title Page
MOPD046 Construction of New Injector Linac for RI Beam Factory at RIKEN Nishina Center 789
 
  • K. Yamada, S. Arai, M.K. Fujimaki, T. Fujinawa, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, M. Komiyama, K. Kumagai, T. Maie, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, Y. Sato, K. Suda, H. Watanabe, Y. Watanabe, Y. Yano, S. Yokouchi
    RIKEN Nishina Center, Wako
  • H. Fujisawa
    Kyoto ICR, Uji, Kyoto
 
 

A new additional injector (RILAC2) is constructed at RIKEN Nishina Center in order to enable the independent operation of the RIBF experiments and super-heavy element synthesis. The RILAC2 consists of a 28 GHz superconducting ECR ion source, a low-energy beam transport with a pre-buncher, a four-rod RFQ linac, a rebuncher, three DTL tanks, and strong Q-magnets between the rf resonators for the transverse focusing. Very heavy ions with m/q of 7 such as 136Xe20+ and 238U35+ will be accelerated up to the energy of 680 keV/u in the cw mode and be injected to the RIKEN Ring Cyclotron without charge stripping. The RFQ linac, the last tank of the DTL, and the bunchers have been converted from old ones in order to save the cost. Construction of the RILAC2 started at the end of the fiscal 2008. The RFQ and DTLs will be installed in the AVF cyclotron vault and be tested in March 2010. The ECR ion source and low-energy beam transport will be set on the RILAC2 in 2010 summer, and the first beam will be accelerated in 2010 autumn. We will present the details of the linac part of RILAC2 as well as the progress of construction which includes the result of high power test of resonators.

 
THPEC060 Developments of RIKEN New Superconducting ECR Ion Source 4191
 
  • Y. Higurashi, M.K. Fujimaki, A. Goto, E. Ikezawa, O. Kamigaito, M. Kase, M. Komiyama, T. Nakagawa, J. Ohnishi, Y. Watanabe
    RIKEN Nishina Center, Wako
  • T. Aihara, M. Tamura, A. Uchiyama
    SHI Accelerator Service Ltd., Tokyo
 
 

The next generation heavy ion accelerator facility, such as the RIKEN RIBF, requires great variety of high charged heavy ions with a magnitude higher beam intensity than currently achievable. In the last decade, performance of the ECR ion sources has been dramatically improved with increasing the magnetic field and RF frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key components (magnetic field configuration, gas pressure etc) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and the technology, we successfully constructed the new 28GHz SC-ECRIS which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. In the test experiment, we obtained the direct evidence that the field gradient and the zone size strongly affect the beam intensity. It concludes that the gentler field gradient and large ECR zone size gives intense beam of highly charged heavy ions from ECR plasma. In this contribution, we report the systematic study of these effects on the beam intensity of highly charged heavy ions.