A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kneisel, P.

Paper Title Page
WEPEC076 Recent Progress on High-Current SRF Cavities at JLab 3052
 
  • R.A. Rimmer, W.A. Clemens, J. Henry, P. Kneisel, K. Macha, F. Marhauser, L. Turlington, H. Wang
    JLAB, Newport News, Virginia
 
 

JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

 
WEPEC079 Design and Prototype Progress toward a Superconducting Crab Cavity Cryomodule for the APS 3061
 
  • H. Wang, G. Cheng, G. Ciovati, J. Henry, P. Kneisel, R.A. Rimmer, G. Slack, L. Turlington
    JLAB, Newport News, Virginia
  • R. Nassiri, G.J. Waldschmidt
    ANL, Argonne
 
 

A squashed, elliptical supercondconducting (SC) cavity with waveguide dampers on the beam pipes has currently been chosen as the baseline design [1] for the Short Pulse X-ray (SPX) project at the Advanced Photon Source (APS). An alternate cavity design, with a waveguide damper located directly on the cavity cell for improved damping characteristics, has also been designed and cold-tested with promising results. In either case, eight cavities would be operated CW in a single cryomodule at 2K to produce an electron bunch chirp of 4MV at a frequency of 2.815 GHz. Detailed analysis of multipactoring (MP), lorentz force detuning (LFD), and the thermal properties of the baseline design has led to an engineering specification of the basic parameters of the cryomodule.

 
THPEC020 QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes 4086
 
  • J.K. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    JLAB, Newport News, Virginia
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
 
 

In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.

 
THPEC021 Coaxial Coupling Scheme for TESLA/ILC-type Cavities 4089
 
  • J.K. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    JLAB, Newport News, Virginia
 
 

This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.