Paper | Title | Page |
---|---|---|
MOPD042 | Commissionning of the IFMIF/EVEDA Accelerator Prototype – Objectives & Plans | 777 |
|
||
In the frame of the IFMIF/EVEDA project, a high-intensity (125 mA) CW deuteron accelerator will be installed and commissioned at the Rokkasho's Broader Approach (BA) site. The main objective of this 9 MeV prototype is to provide information on the feasibility of the design, the manufacturing and the operation of the two linacs (up to 40 MeV) foreseen for IFMIF*. Based on the requirements for each System (Accelerators, Lithium target and Tests Facility) which are deduced from the IFMIF fusion material irradiation requirements, given by the users, the objectives of this accelerator prototype are defined and presented here. Also, because of the distributed nature of the design work and the procurement of the accelerator, organization of the installation and commissioning phase is essential. The installation and commissioning schemes, the organization proposed and the overall plans are presented. *IFMIF International Team, IFMIF Comprehensive Design Report (CDR) 2003. |
||
MOPEC056 | The Accelerator Prototype of the IFMIF/EVEDA Project | 588 |
|
||
The objectives of the IFMIF/EVEDA project are to produce the detailed design of the entire IFMIF facility, as well as to build and test a number of prototypes, including a high-intensity CW deuteron accelerator (125 mA @ 9 MeV). Most of the accelerator components (Injector, RFQ, Superconducting RF-Linac, Transport Line and Beam Dump, RF Systems, Local control systems, beam instrumentation) are designed and provided by European institutions (CEA/Saclay, CIEMAT, INFN/LNL, SCK-CEN), while the RFQ couplers, the supervision of the control system and the building including utilities constructed at Rokkasho BA site are provided by JAEA. The coordination between Europe and Japan is ensured by an international project team, located in Rokkasho, where the accelerator will be installed and commissioned. The design and R&D activities are presented, as well as the schedule of the prototype accelerator. |
||
TUPEC007 | Construction of Injector System for SPring-8 X-FEL | 1722 |
|
||
The injector of the 8 GeV linac generates an electron beam of 1 nC, accelerates it up to 30 MeV, and compresses its bunch length down to 20 ps. Even slight RF instability in its multi-stage bunching section fluctuates the bunch width and the peak current of an electron beam and it accordingly results in unstable laser oscillation in the undulator section. The acceptable instabilities of the RF fields in the cavities, which permit 10% rms variation of the peak beam current, are only about 0.01% rms in amplitude and 120 fs rms in phase according to beam simulation. The long-term RF variations can be compensated by feedback control of the RF amplitude and phase, the short-term or pulse-to-pulse variations, however, have to be reduced as much as possible by improving RF equipment such as amplifiers. Thus we have carefully designed and manufactured the RF cavities, amplifiers and control systems, giving the highest priority to the stabilization of the short-term variations. Components of the injector will be completed by the end of the April 2010, and the injector will be perfected in the summer 2010. We will present the performance of the completed devices in the conference. |
||
THPEA009 | Construction Status of C-band Main Accelerator for XFEL/SPring-8 | 3691 |
|
||
C-band (5712 MHz) accelerator is used as the main accelerator of the XFEL in SPring-8. Since the C-band generates a high accelerator gradient, as high as 35 MV/m, the total length of the 8-GeV accelerator fits within 400 m, including the injector and three bunch compressors. We use 64 C-band rf units, which consists of 128 accelerating structures, 64 rf pulse compressors, 64 klystrons, waveguide components, etc. Mass-production of these high power rf components has been almost completed. Production quality is confirmed by the high power rf test. Installation of the C-band components started in August 2009. So far, about half of the components have been installed on schedule. The accelerating structures are aligned with about 0.1 mm accuracy. By the date of the IPAC'10 conference, we will almost complete the installation. In this presentation, we will report the construction status. |