A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Katagiri, K.

Paper Title Page
MOPEA007 Fast Raster Scanning System for HIMAC New Treatment Facility 76
 
  • T. Furukawa, T. Inaniwa, Y. Iwata, K. Katagiri, K. Mizushima, K. Noda, S. Sato, T. Shirai, Y. Takei, E. Takeshita
    NIRS, Chiba-shi
 
 

Construction of new treatment facility as an extension of the existing HIMAC facility, in which all treatment room will be equipped with a 3D pencil beam scanning system, is in progress at NIRS. The challenge of this project is to realize treatment of a moving target by scanning irradiation, because pencil beam scanning is more sensitive to organ motions compared with the conventional broad-beam irradiation. To accomplish practical moving target irradiation, a prototype of the scanning irradiation system was constructed and installed into existing HIMAC physics experiment course. One of the most important features of the system to be tested is fast scanning toward moving target irradiation with a relatively large number of rescannings within an acceptable irradiation time. Commissioning of the prototype is successfully in progress cooperating with highly stabilized beam provided by the HIMAC accelerator complex. We will report the design of the system and the status of the beam study.

 
MOPD102 Space Charge Analysis on the Multi-wire Proportional Chamber for the High Rate Incident Beams 942
 
  • K. Katagiri, T. Furukawa, K. Noda, E. Takeshita
    NIRS, Chiba-shi
 
 

For the beam profile diagnosis of heavy ion cancer therapy in HIMAC (Heavy Ion Medical Accelerator in Chiba), a MWPC (Multi-Wire Proportional Counter) detector is employed as a beam profile monitor. Due to the high rate beams (~ 108 pps), a gain reduction of output signals, which is caused by space charge effects, have been observed in the scanning beam experiments at HIMAC. In order to reduce the gain reduction by optimizing the parameters of MWPCs including anode radius, and distance between electrodes, a numerical calculation code was developed by employing two-dimensional fluid model. In order to understand the relations between the gain reduction and space charge distribution, the temporal evolution of the ion/electron distribution were calculated for several hundredμseconds, which is significantly longer than the time period required for ions to travel between the electrodes. The output signal was also evaluated by the current flux into the anode and compared with that obtained by the beam experiment at HIMAC. The dependence of the gain reduction on the MWPC parameters was analyzed from these calculation results.

 
TUOCRA01 New Treatment Research Facility Project at HIMAC 1324
 
  • K. Noda, S. Fukuda, T. Furukawa, T. Himukai, T. Inaniwa, Y. Iwata, N. Kanematsu, K. Katagiri, A. Kitagawa, S. Minohara, S. Mori, T.M. Murakami, M. Muramatsu, S. Sato, T. Shirai, E. Takada, Y. Takei, E. Takeshita
    NIRS, Chiba-shi
  • T. Fujimoto, Y. Sano
    AEC, Chiba
 
 

Based on more than ten years of experience of the carbon cancer therapy with HIMAC, we have proposed a new treatment facility for the further development of the therapy with HIMAC. This facility will consist of three treatment rooms: two rooms equipped with horizontal and vertical beam-delivery systems and one room with a rotating gantry. For the beam-delivery system of the new treatment facility, a 3D hybrid raster-scanning method with gated irradiation with patient's respiration has been proposed. A R&D study has been carried out toward the practical use of the proposed method. In the R&D study, we have improved the beam control of the size, the position and the time structure for the proposed scanning method with the irradiation gated with patient's respiration. Further, owing to the intensity upgrade of the HIMAC synchrotron, we can successfully extend the flattop duration, which can complete one fractional irradiation with one operation period. The building construction of the new treatment facility will be completed at March 2010 and treatment of 1st patient is scheduled at March 2011. We will report the recent progress on the new treatment facility project at HIMAC.

 

slides icon

Slides