Paper | Title | Page |
---|---|---|
MOPD071 | Horizontal-Vertical Coupling for Three Dimensional Laser Cooling* | 855 |
|
||
In order to achieve three dimensional crystal beam, laser cooling forces are required not only in the longitudinal direction, but also in the transverse directions. With the resonance coupling method*, transverse temperature is transmitted into longitudinal direction, and we have already demonstrated horizontal laser cooling experimentally **. In the present paper, we describe an approach to extend this result to three dimensional cooling. The vertical cooling requires that the horizontal oscillation couples with the vertical oscillation. For achieving horizontal-vertical coupling, a solenoid in electron beam cooling apparatus is utilized with an experiment (Qx=2.07,Qy=1.07). For various solenoidal magnetic fields from 0 to 40Gauss, horizontal and vertical betatron tunes are measured by beam transfer function. For a certain region of the solenoidal magnetic field, these tunes are mixed up each other. By optimization of such a coupling, we aim to proceed to three dimensional laser cooling. * H. Okamoto Phys. Rev. E 50, 4982 (1994) |
||
MOPD072 | Optical Measurement of Transverse Laser Cooling with Synchro-Betatron Coupling* | 858 |
|
||
Experiments of transverse laser cooling for 24Mg+ beam have been performed at the small ion storage and cooler ring, S-LSR. It is predicted that the longitudinal cooling force is transmitted to the horizontal direction with synchro-betatron coupling at the resonant condition*. The laser system consists of a 532nm pumping laser, a ring dye laser with variable wavelength around 560nm, and a frequency doubler. The horizontal beam size and the longitudinal momentum spread were optically measured by a CCD and a PAT (Post Acceleration Tube) respectively**, ***. The CCD measures the beam size by observing spontaneous emission from the beam and records in sequence of 100ms time windows the development of the beam profile. The time variation of the beam size after beam injection indicates the transverse cooling time. The initial horizontal beam size, which was about 1mm, was decreased by 0.13mm in 1.5s. The longitudinal momentum spread measured by PAT is increased at the resonant condition. This suggests transverse temperature was transferred to longitudinal direction by synchro-betatron coupling. Both measurements denote the horizontal cooling occurred only in the resonant condition ****. * H. Okamoto, Phys. Rev. {E50}, 4982 (1994) |
||
MOPD073 | Transverse Laser Cooling by Synchro-betatron Coupling | 861 |
|
||
Transverse laser cooling with the use of a synchro-betatron coupling is experimentally demonstrated at the ion storage/cooler ring S-LSR. Bunched 40keV 24Mg+ beams are cooled by a co-propagating laser with a wavelength of 280nm. Synchrotron oscillation and horizontal betatron oscillation are coupled by an RF drifttube at a finite dispersive section (D = 1.1m) in order to transmit longitudinal cooling force to the horizontal degree of freedom*. Time evolution of horizontal beam size during laser cooling was measured by a CCD camera**. Horizontal beam sizes were reduced by 0.13mm within 1.5s after injection when the tune values satisfy a difference resonance condition, νs - νh = integer, at the operating tunes of (νh, νv, νs)=(2.067, 1.104, 0.067) and (2.058, 1.101, 0.058). Without resonance condition, the size reduction was negligibly small. The momentum spread was 1.7x10-4 on the resonance otherwise 1.2x10-4. These results show that the horizontal heats are transferred to the longitudinal direction through the synchro-betatron coupling with the resonance condition and are cooled down by a usual longitudinal bunched beam laser cooling. * H. Okamoto, Phys. Rev. E 50, 4982 (1994). |