A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jeff, A.

Paper Title Page
MOPE055 Design for a Longitudinal Density Monitor for the LHC 1098
 
  • A. Jeff, S. Bart Pedersen, A. Boccardi, E. Bravin, T. Lefèvre, A. Rabiller, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
  • C.P. Welsch
    The University of Liverpool, Liverpool
 
 

Synchrotron radiation is currently used on LHC for beam imaging and for monitoring the proton population in the 3 microsecond abort gap. In addition to these existing detectors, a study has been initiated to provide longitudinal density profiles of the LHC beams with a high dynamic range and a 50ps time resolution. This would allow for the precise measurement both of the bunch shape and the number of particles in the bunch tail or drifting into ghost bunches. A solution is proposed based on counting synchrotron light photons with two fast avalanche photo‐diodes (APD) operated in Geiger mode. One is free‐running but heavily attenuated and can be used to measure the core of the bunch. The other is much more sensitive, for the measurement of the bunch tails, but must be gated off during the passage of the core of the bunch to prevent the detector from saturating. An algorithm is then applied to combine the two measurements and correct for the detector dead time, after pulsing and pile‐up effects. Initial results from laboratory testing of this system are described in this paper.

 
MOPE057 First Beam Measurements with the LHC Synchrotron Light Monitors 1104
 
  • T. Lefèvre, E. Bravin, G. Burtin, A. Guerrero, A. Jeff, A. Rabiller, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

On the Large Hadron Collider (LHC), the continuous monitoring of the transverse sizes of the beams relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 3 TeV), while edge and centre radiation from a beam separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the performance of the imaging system in terms of spatial resolution, and comments on the light intensity obtained and the cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

 
WEPEB072 First Operation of the Abort Gap Monitor for LHC 2863
 
  • T. Lefèvre, S. Bart Pedersen, A. Boccardi, E. Bravin, A. Goldblatt, A. Jeff, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

The LHC beam dump system relies on extraction kickers that need 3 microseconds to rise up to their nominal field. As a consequence, particles crossing the kickers during this rise time will not be dumped properly. The proton population during this time should remain below quench and damage limits at all times. A specific monitor has been designed to measure the particle population in this gap. It is based on the detection of Synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must be adapted accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.