A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Holzer, B.J.

Paper Title Page
MOPEC002 Dynamic Aperture Studies and Field Quality Considerations for the LHC Upgrade Optics 453
 
  • B.J. Holzer, S.D. Fartoukh, F. Schmidt
    CERN, Geneva
 
 

The layout of the interaction region for the LHC upgrade project is based on a number of new magnets that will provide the required strengths to focus the colliding beams as well as to separate them after the collision. As in the nominal LHC, a triplet of quadrupole magnets is foreseen for the upgrade optics and in addition a separator dipole to limit the parasitic bunch crossings of the two counter rotating bunch trains. Due to the smaller beta function at the IP however, the requirements for the free aperture of these IR magnets are more demanding and the effect of the higher order multipoles is more severe than under the nominal LHC conditions. Using the tracking simulations to study these effects, target values for the multipole coefficients of the new magnets have been defined as well as a multipole correction scheme that will be used to compensate those field errors which cannot be avoided due to design and construction tolerances. Based on these considerations the required field quality of the new LHC low beta magnets is discussed and the resulting dynamic aperture for different multipole correction scheme is presented.

 
TUPEB034 Interaction Region Design for a Ring Ring Version of the LHeC Study 1596
 
  • B.J. Holzer, S. Bettoni, O.S. Brüning, S. Russenschuck
    CERN, Geneva
  • R. Appleby
    UMAN, Manchester
  • J.B. Dainton, L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire
  • M. Klein
    The University of Liverpool, Liverpool
  • A. Kling, B. Nagorny, U. Schneekloth
    DESY, Hamburg
  • P. Kostka
    DESY Zeuthen, Zeuthen
  • A. Polini
    INFN-Bologna, Bologna
 
 

The LHeC aims at colliding hadron-lepton beams with center of mass energies in the TeV scale. For this purpose the existing LHC storage ring is extended by a high energy electron accelerator in the energy range of 60 to 140 GeV. The electron beam will be accelerated and stored in a LEP like storage ring in the LHC tunnel. In this paper we present the layout of the interaction region which has to deliver at the same time well matched beam optics and an efficient separation of the electron and proton beams. In general the large momentum difference of the two colliding beams provides a very elegant way to solve this problem: A focusing scheme that leads to the required beam sizes of the electrons and protons is combined with an early but gentle beam separation to avoid parasitic beam encounters and still keep the synchrotron radiation level in the IR within reasonable limits. We present in this paper two versions of this concept: A high luminosity layout where the mini beta magnets are embedded into the detector design as well as an IR design that is optimised for maximum acceptance of the particle detector.

 
TUPEB037 Interaction-Region Design Options for a Linac-Ring LHeC 1605
 
  • F. Zimmermann, S. Bettoni, O.S. Brüning, B.J. Holzer, S. Russenschuck, D. Schulte, R. Tomás
    CERN, Geneva
  • H. Aksakal
    N.U, Nigde
  • R. Appleby
    UMAN, Manchester
  • S. Chattopadhyay, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
  • A.K. Çiftçi, R. Çiftçi, K. Zengin
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • J.B. Dainton, M. Klein
    The University of Liverpool, Liverpool
  • E. Eroglu, I. Tapan
    UU, Bursa
  • P. Kostka
    DESY Zeuthen, Zeuthen
  • V. Litvinenko
    BNL, Upton, Long Island, New York
  • E. Paoloni
    University of Pisa and INFN, Pisa
  • A. Polini
    INFN-Bologna, Bologna
  • U. Schneekloth
    DESY, Hamburg
  • M.K. Sullivan
    SLAC, Menlo Park, California
 
 

In a linac-ring electron-proton collider based on the LHC ("LR-LHeC"), the final focusing quadrupoles for the electron beam can be installed far from the collision point, as far away as the proton final triplet (e.g. 23 m) if not further, thanks to the small electron-beam emittance. The inner free space could either be fully donated to the particle-physics detector, or accommodate "slim" dipole magnets providing head-on collisions of electron and proton bunches. We present example layouts for either scenario considering electron beam energies of 60 and 140 GeV, and we discuss the optics for both proton and electron beams, the implied minimum beam-pipe dimensions, possible design parameters of the innermost proton and electron magnets, the corresponding detector acceptance, the synchrotron radiation power and its possible shielding or deflection, constraints from long-range beam-beam interactions as well as from the LHC proton-proton collision points and from the rest of the LHC ring, the passage of the second proton beam, and the minimum beta* for the colliding protons.