A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hock, K.M.

Paper Title Page
WEPE056 Accelerator and Particle Physics Research for the Next Generation Muon to Electron Conversion Experiment - the PRISM Task Force 3473
 
  • J. Pasternak, L.J. Jenner, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow
    UMAN, Manchester
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Kuno, A. Sato
    Osaka University, Osaka
  • A. Kurup
    Fermilab, Batavia
  • J.-B. Lagrange, Y. Mori
    KURRI, Osaka
  • M. Lancaster
    UCL, London
  • S.A. Martin
    FZJ, Jülich
  • C. Ohmori
    KEK/JAEA, Ibaraki-Ken
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • H. Witte, T. Yokoi
    JAI, Oxford
 
 

The next generation of lepton flavour violation experiments will use high intensity and high quality muon beams. Such beams can be produced by sending a short proton pulse to the pion production target, capturing pions and performing RF phase rotation on the resulting muon beam in an FFAG ring, which was proposed for the PRISM project. A PRISM task force was created to address the accelerator and detector issues that need to be solved in order to realise the PRISM experiment. The parameters of the initial proton beam required and the PRISM experiment are reviewed. Alternative designs of the PRISM FFAG ring are presented and compared with the reference design. The ring injection/extraction system, matching with the solenoid channel and progress on the ring's main hardware systems like RF and kicker magnet are discussed. The activity on the simulation of a high sensitivity experiment and the impact on physics reach is described. The progress and future directions of the study are presented in this paper.

 
THPD031 Development of Tomographic Reconstruction Methods for Studies of Transverse Phase Space in the EMMA FFAG Injection Line 4346
 
  • M.G. Ibison, K.M. Hock, D.J. Holder, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
 
 

We present a simulation study on the reconstruction of the phase space distribution of a beam in the EMMA injection line. The initial step has been to use a Gaussian beam to calculate the phase space distribution and the horizontal and vertical beam projections which would be expected at a screen. The projections obtained from a range of optical configurations are provided as input for reconstructing the phase space distribution using a standard tomography method. The result from the reconstruction can be compared with the known phase space distribution. By taking into account the limited range of quadrupole strengths available, we can determine how practical limitations may affect the reconstruction.


*"EMMA: THE WORLD'S FIRST NON-SCALING FFAG," R. Edgecock, D. Kelliher, S. Machida, STFC/RAL, Didcot, UK et al. in Proceedings of EPAC08, Genoa, Italy