A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Higo, T.

Paper Title Page
THPEA012 Various Observables of TW Accelerator Structures Operating 100MV/m or Higher at X-band Facility, Nextef of KEK 3699
 
  • T. Higo, T. Abe, M. Akemoto, S. Fukuda, N. Higashi, Y. Higashi, N.K. Kudo, S. Matsumoto, T. Shidara, T. Takatomi, K. Ueno, Y. Watanabe, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
 
 

Under the CERN-SLAC-KEK collaboration, we have been developing the high gradient TW accelerator structures. One of the main focuses is the feasibility study of CLIC accelerator structure at X-band. A high power facility, Nextef*, was established at KEK in 2007. A few structures have been tested, including an un-damped disk-loaded structure successfully tested beyond 100 MV/m, a heavily damped structure to be tested from late 2009 and a structure made in a quadrant configuration. These structures follow the same accelerating-mode RF parameter profile, called CLIC-C**, but show different features at high gradient operation. Various observables, such as dark current, vacuum activities, light emission, breakdown rate, and so on, are measured. We discuss the high gradient phenomena related to these observables and the possible improvement for stable operation at a higher gradient.


* T. Higo et al., THP038, LINAC06,2006.
**A. Grudiev, http://indico.cern.ch/conferenceDisplay.py?confId=30911

 
THPEA013 Advances in X-band TW Accelerator Structures Operating in the 100 MV/m Regime 3702
 
  • T. Higo, Y. Higashi, S. Matsumoto, K. Yokoyama
    KEK, Ibaraki
  • C. Adolphsen, V.A. Dolgashev, A. Jensen, L. Laurent, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Döbert, A. Grudiev, G. Riddone, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated basically using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One goal has been to refine the essential parameters and fabrication procedures needed to realize such high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that surface temperature rise during the pulses be higher, which may increase the breakdown rate. Structures with heavy damping will be tested in late 2009/early 2010, and this paper will present these results together with some of the earlier results from non-damped structures and structures built with a quadrant geometry.

 
THPEA014 TE11/TM11 Mixed-mode Waveguide Valve at X-band 3705
 
  • S. Kazakov, T. Higo, S. Matsumoto
    KEK, Ibaraki
 
 

A waveguide vacuum valve for WR90 waveguide was designed, fabricated and tested. The valve consists of a modified commercial gate valve sandwitched with smooth tapers. The TE10 traveling wave in WR90 waveguide is "transmoded" into TE11+TM11 mode in the taper, going through the gate valve and is tapered back to the normal mode in WR90. The test has been successfully done. The valve stably trasmitted 40MW peak power with 500ns pulse width and this is limited by available RF power source.

 
THPEA015 L-band Accelerator System in Injector Linac for SuperKEKB 3708
 
  • S. Matsumoto, M. Akemoto, T. Higo, H. Honma, K. Kakihara, T. Kamitani, H. Nakajima, K. Nakao, Y. Ogawa, Y. Yano, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
 
 

In order to improve the capture efficiency of the positron produced at the target in present KEKB Injector linac, a new project has just started to utilize L-band (1298MHz) RF. The present S-band (2856MHz) capture cavities and successive three RF units are to be replaced by those of L-band. The specifications of the L-Band system should fulfill the demands of a positron damping ring downstream which is also to be under study for super KEKB project. Besides the whole design work of the system, our present ongoing work is rather concentrated on establishing L-Band RF source and accelerating structures.

 
THPEA064 Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range 3819
 
  • J.W. Wang, J.R. Lewandowski, J.W. Van Pelt, C. Yoneda
    SLAC, Menlo Park, California
  • B.A. Gudkov, G. Riddone
    CERN, Geneva
  • T. Higo, T. Takatomi
    KEK, Ibaraki
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5·10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

 
THPD007 The Linac Upgrade Plan for SuperKEKB 4290
 
  • T. Sugimura, M. Akemoto, D.A. Arakawa, A. Enomoto, S. Fukuda, K. Furukawa, T. Higo, H. Honma, M. Ikeda, E. Kadokura, K. Kakihara, T. Kamitani, H. Katagiri, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, H. Nakajima, K. Nakao, Y. Ogawa, S. Ohsawa, M. Satoh, T. Shidara, A. Shirakawa, T. Suwada, T. Takenaka, Y. Yano, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
 
 

The next generation B-factory 'SuperKEKB' project whose target luminosity is 8 ×1035 cm-2s-1 is under consideration. A 'nano-beam scheme' is introduced to the SuperKEKB. In the scheme, an electron beam (Energy = 7 GeV, Charge = 3-4 nC/bunch, Vertical emittance =2.8 x 10-5 m) and a positron beam (Energy = 4 GeV, Charge = 4 nC/bunch, Vertical emittance = 1.6 x 10-5 m), are required at the end of injector linac. They are quite challenging targets for the present linac. In order to meet the requirements, we will introduce some new components to the linac. They are a photo-cathode RF gun for an electron beam, a positron capture section using new L-band cavities, a newly designed positron-generation target system and a damping ring for a positron beam. This presentation shows a strategy of our injector upgrade.