Paper | Title | Page |
---|---|---|
TUOCMH02 | Stabilization and Fine Positioning to the Nanometre Level of the CLIC Main Beam Quadrupoles | 1274 |
|
||
The CLIC main beam quadrupoles need to be stabilized to 1.5 nm integrated R.M.S. displacement at 1 Hz. The choice was made to apply active stabilization with piezoelectric actuators in a rigid support with flexural guides. The advantages of this choice are the robustness against external forces and the possibility to make fast incremental nanometre positioning of the magnet with the same actuators. The study and feasibility demonstration is made in several steps from a single degree of freedom system (s.d.o.f.) with a small mass, a s.d.o.f. with a large mass, leading to the demonstration including the smallest (type 1) and largest (type 4) CLIC main beam quadrupoles. The paper discusses the choices of the position and orientation of the actuators and the tailored rigidities of the flexural hinges in the multi degree of freedom system, and the corresponding MIMO control system. The compatibility with the magnet support and micrometer alignment system is essential. The status of the study and performed tests will be given. |
||
WEPEB058 | Compatibility and Integration of a CLIC Quadrupole Nanometre-stabilization and Positioning System in a Large Accelerator Environment | 2824 |
|
||
A prerequisite for a successful nanometre level magnet stabilization and pointing system is a low background vibration level. This paper will summarize and compare the ground motion measurements made recently in different accelerator environments at e.g. CERN, CESRTA and PSI. Furthermore the paper will give the beginning of an inventory and characterization of some technical noise sources, and their propagation and influence in an accelerator environment. The importance of the magnet support is also mentioned. Finally, some advances in the characterization of the nanometre vibration measurement techniques will be given. |
||
WEPE041 | A Superconducting Magnet Upgrade of the ATF2 Final Focus | 3440 |
|
||
The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence. * ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html |