Paper | Title | Page |
---|---|---|
MOPE012 | Performance of the Main Ring BPM during the Beam Commissioning at J-PARC | 981 |
|
||
Experiences of operating BPM's during beam commissioning at the J-PARC MR are reported. The subjects are: (1) bug report, statistics and especially the effect of a beam duct step, (2) position resolution estimation (<30 micrometers with 1 sec averaging), (3) beam based alignment. |
||
MOPE014 | Development of a Nondestructive Beam Profile Monitor using a Sheeted Nitrogen-molecular Beam | 987 |
|
||
A nondestructive beam profile monitor using a nitrogen-molecule gas-jet sheet has been developed for intense ion beams. The density of the gas-jet sheet corresponds to 1 x 10-3 Pa. A light emitted from nitrogen excited by an ion beam collision is measured with a high sensitive camera attached a radiation hard image intensifier. In tests, beam profiles of 6 MeV/u full-stripped oxygen beams whose peak current was 600 μA. were measured. This paper describes characteristics of the instruments and the beam test results. |
||
THPEB014 | Status and Upgrade Plan of Slow Extraction from the J-PARC Main Ring | 3912 |
|
||
High power protons from the J-PARC main ring is slowly extracted using the third integer resonance and delivered to the experimental hall for various nuclear and particle physics experiments. The slow extraction device comprises two electro static septa (ESS),ten magnetic septa, four bump magnets, eight resonant sextupole magnets and their power supply. One of the critical issue of the slow extraction is radiation caused by the beam loss during the slow extraction. We have developed the electrostatic and magnetic septa with thin septum thickness. A unique scheme with large step size and small angular spread of the extracted beam enables hit rate on the ESS less than 1% level. In January 2009, first 30 GeV proton beam has been successfully delivered to the fixed target. Quadrupole magnets and a DSP feedback control system to obtain a uniform beam spill structure were implemented in 2009 summer shutdown period. We will report the extraction efficiency, extracted beam profiles and spill structure obtained by the beam commissioning so far. We will also mention a upgrade plan based on some new ideas to aim a higher performance. |
||
THPEB015 | Beam Injection Tuning of the J-PARC Main Ring | 3915 |
|
||
The beam commissioning of J-PARC (Japan Proton Accelerator Research Complex) MR (Main Ring) was started from May 2008 and is in progress. As usual, injection tuning is in the first stage and strongly related to other tuning items. Starting with design schemes, making adjustment due to leakage field influence from injection septum, doing envelope matching considering dilution of beam profile in Main Ring are reported in this paper. The 'Without bump' scheme was got on June 15th 2008, while 'With bump' scheme on February 15th 2009. Beam orbit betatron oscillation to the MR close orbit which cause by injection error is less than 1 mm both in horizontal and vertical direction. Meanwhile, Beam Optics matching for 3 GeV beam from 350BT to MR has been well done too, which is also very important. * T. Koseki, Challenges and Solutions for J-PARC Commissioning and Early Operation, in these proceedings |
||
MOPE011 | Shot-by-shot Beam Position Monitor System for Beam Transport Line from RCS to MR in J-PARC | 978 |
|
||
To maintain the beam orbit of beam transport line from RCS to MR in J-PARC (3-50BT), 14 beam position monitors (BPMs) were installed. Their signals gathered in the local control building (D01) have been measured by using 14 digitizing oscilloscopes. The data acquisition system have a performance of shot-by-shot measurement. |
||
MOPE013 | Measurements of Proton Beam Extinction at J-PARC | 984 |
|
||
Proton beam extinction, defined as a residual to primary ratio of beam intensity, is one of the most important parameters to realize the future muon electron conversion experiment (COMET) proposed at J-PARC. To achieve the required extinction level of 10-9, we started measuring beam extinction at main ring (MR) as the first step. The newly developed beam monitor was installed into the abort beam line and the first measurement was successfully performed by using the fast-extracted MR beam. We found that empty RF buckets of RCS, in which all protons were considered to be swept away by a RF chopper before injection to RCS,, contained about 10-5 of the main beam pulse due to chopper inefficiency. We are now developing a new beam monitor with improved performance for further studies at the abort line. In addition, we have started new measurements at the different stage of proton acceleration, i.e. at Linac, 3-50 BT line, and the main ring. In this paper, we present recent results and future prospect of beam extinction measurements. |
||
WEPEB007 | The Data Acquisition System of Beam Position Monitors in J-PARC Main Ring | 2698 |
|
||
The Data Acquisition System of Beam Position Monitors(BPMs) in J-PARC Main Ring are consist of 186 Linux-based Data Processing Cirquits(BPMCs) and 12 EPICS IOCs. They are important tool to see the COD and turn-by-turn beam positions. This report describes the process of the data reconstruction which include how the various calibration constants are applied. |
||
THPEA081 | Vacuum Surface Scrubbing by Proton Beam in J-PARC Main Ring | 3858 |
|
||
In J-PARC 50GeV synchrotron ring, large vacuum pressure rises above 10-3 Pa are found at 30GeV acceleration final stage of intensity over 1013 protons per pulse in the chambers of the in-vacuum electrostatic septum magnet for the slow-extraction(SX), magnetic septum for SX, and the kicker magnet for the fast-extraction. This pressure rise depends on beam intensity and peak-current, and can be reduced by continuous beam operations, such as scrubbing with proton beam, secondary emission electrons and other cations of remaining gasses or desorptions. |