A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hashimoto, S.

Paper Title Page
WEPEA030 Improved Stability of the Radiation Intensity at the NewSUBARU Synchrotron Radiation Facility 2549
 
  • S. Hashimoto, S. Miyamoto
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • K. Kawata, Y. Minagawa, T. Shinomoto
    JASRI/SPring-8, Hyogo-ken
 
 

The periodic fluctuations and drifts in the radiation intensity have been observed at the NewSUBARU synchrotron radiation facility. To clarify the cause of this problem we have measured temperatures of air, cooling water, equipments and building with the network-distributed data logger. And we found that temperature fluctuations in both air in the shielded tunnel and the cooling water mainly affect the stabilities of electron beam orbit and optical axis. To maintain a constant temperature, the large doors for carrying equipment at the experimental hall were covered with insulated curtains, and we optimized PID parameters of temperature controllers for air and water. As results, the periodic fluctuations almost disappeared, but some drifts were still remained, which are due to slow variations of equipment temperature. By realizing the automatic COD correction, the drift in electron beam position could be suppressed and the fluctuations of radiation intensity observed at beam-lines became smaller than they used to be. For further stabilization, we recently introduced a XBPM upstream in a beamline to measure the vertical position of radiation axis precisely.

 
THOBRA02 Suppression of Transverse Instabilities by Chromaticity Modulation 3647
 
  • T. Nakamura, N. Kumagai, S. Matsui, H. Ohkuma, T. Ohshima, H. Takebe
    JASRI/SPring-8, Hyogo-ken
  • A. Ando, S. Hashimoto, Y. Shoji
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • K. Kumagai
    RIKEN Nishina Center, Wako
 
 

Transverse beam instabilities were suppressed with chromaticity modulation (CM)* in the electron storage ring, New SUBARU. The horizontal and vertical betatron tune spread inside a bunch were introduced by CM with synchrotron oscillation frequency driven by an AC sextuple magnet**, to obtain Landau damping of the coherent bunch motion. The tune spread in a bunch is usually introduced by octupole field, however, its high nonlinearity reduces the dynamic aperture. And usual feedback against instabilities work only on m=0 mode and it is not easy to be applied to hadron synchrotrons because of their varying revolution period. The CM scheme has not such disadvantages. The damping time of coherent motion excited by external kick was measured and was found as less than 1ms, one order faster than that without CM. To observe the effect on instabilities, we intentionally tuned an HOM in a cavity to excite a horizontal multi-bunch instability. The instability peak in the spectrum of the beam motion was vanished with CM turned on and the instability was suppressed. We also observed the increase of the threshold current of the vertical single-bunch mode-coupling instability by factor 3 with CM.


* T. Nakamura, Proc. of PAC'95, p.3100 (1995).
** T. Nakamura, et al., Appl. Superconduct., IEEE Trans. Vol. 18, p.326 (2008).

 

slides icon

Slides