Paper | Title | Page |
---|---|---|
MOOCMH02 | Overview of Short Pulse X-ray Generation using Crab Cavities at SPring-8 | 39 |
|
||
We have been developing a system to generate a short pulse X-ray using crab cavities at SPring-8 Storage Ring. The ring holds 30-m long straight sections and the vertical beam size at the center of the straight sections is 6.5 micrometers in standard deviation. If we install four superconducting crab cavities and a mini-pole undulator in one of the straight sections, we can convert the time distribution of the electron bunch into the spatial distribution. After slicing the emitted photons with vertical slits, we can obtain a sub-picosecond X-ray pulse. In this scheme, the maximum repetition rate of the short pulse X-ray is the same as the acceleration frequency of the ring (508MHz) and user experiments at other beam-lines are not disturbed by this short pulse generation. We are planning to install KEKB type crab cavities as vertical deflectors. Phase fluctuation among crab cavities must be reduced less than 14 mdeg in order to avoid residual deflection in the vertical direction. In this paper, we report an overview of the short pulse generation scheme and topics of hardware development for stabilization of the RF phase fluctuation. |
||
|
||
MOOCMH03 | Beam Commissioning Status of Superconducting Crab Cavities in KEKB | 42 |
|
||
Two superconducting crab cavities have been operated stably without any significant trouble for three years in KEKB since Feb/2007. At present (Dec/2009), maximum beam current with 'Crab ON' achieves 1200mA for HER (High Energy Ring, electron) and 1640mA for LER (Low Energy Ring, positron), respectively. RF trip rate per day due to crab cavity during 'physics run' was 2.8/day for HER and 0.4/day for LER at the beginning, and is 0.8/day for HER and 0.1/day for LER at present, respectively. Although Piezo actuator was frequently broken down at the beam abort with RF trip of the crab cavity, it was controlled stably by only LLRF (Low Level RF) feed-back system without Piezo actuator. Maximum HOM (Higher Order Mode) power, which is measured at HOM dampers made from ferrite, is 9.1kW for HER and 14.6kW for LER at the maximum beam current, respectively. LER crab voltage, which had suddenly dropped from 1.50MV to 1.10MV on March/2007, was gradually recovered from 1.14MV to 1.33MV in 2008. |
||
|
||
TUPD010 | Simulation of Longitudinal Emittance Control in J-PARC RCS | 1940 |
|
||
The Longitudinal emittance in J-PARC RCS should be controlled to accelerate a high intensity proton beam with minimal beam loss. In order to study and minimize the beam loss during acceleration, the optimized way to add the 2nd higher harmonic rf has been calculated by a particle tracking code. Furthermore, the bunch shape at RCS extraction should be controlled and optimized for the MR injection. For this purpose, the optimum RCS acceleration pattern has been calculated. We describe the simulation results and the comparison with the beam test. |
||
WEPEC015 | Development of a Prototype Module for the ERL Superconducting Main Linac at KEK | 2923 |
|
||
A prototype module including a couple of 1.3 GHz superconducting 9-cell cavities has been designed as the main linac of cERL which is the test facility to establish the basic ERL technology at KEK. The shape of 9-cell Nb structure has been optimized to accelerate a CW beam of 100 mA with sufficiently damped higher order modes (HOM) which is achieved by adopting an eccentric fluted beam pipe and a cylindrical beam pipe of a large diameter of 123 mm. Extracted HOMs are absorbed by the ferrite cylinders bonded on the copper beam pipes by HIP process. A power coupler with double disk-ceramics has been developed to transfer an RF of 20 kW CW to the cavity in full reflection. The test results of fabrication, cooling and RF performance for these components are integrated as the prototype module of the main linac for cERL facility. |
||
WEPEC021 | Measurement of Hydrogen Absorbed in Niobium | 2935 |
|
||
Hydrogen absorbed in niobium was measured using effect of hydrogen Q-degradation. A niobium cavity was designed and manufactured for this experiment. Hydrogen was introduced from outside of the cavity by electrolysis of diluted sulfuric acid on the outer surface of the cavity with an anode made by stainless steel. The Q-factor is one of the most unstable property of superconducting cavities. Especially, the reproducibility of Q-factor cannot be so expected after disassembled and reassembled it. In this experiment, the Q-factor was measured without disassembling, because hydrogen was introduced from outside of the cavity. The Q-degradation was observed successfully. And the Q-factor becomes worse and worse, when hydrogen was introduced more and more. To estimate the amount of hydrogen which is absorbed in niobium, small and thin niobium samples were prepared. They were warmed by the energizing heating in vacuum after having introduced hydrogen. The out-gas was analyzed by QMS, and the amount of hydrogen was estimated. This method can be applied to measure the absorbed hydrogen during electro or chemical polishing of cavities without some influence of changing the surface morphology. |
||
TUPE091 | Recent Progress in the Energy Recovery Linac Project in Japan | 2338 |
|
||
Future synchrotron light source using a 5-GeV-class energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting active R&D efforts for that. We are developing super-brilliant DC photocathode guns, two types of cryomodules for both injector and main superconducting linacs, 1.3 GHz high CW-power rf sources, and other important components. We are also constructing a compact ERL for demonstrating the recirculation of low-emittance, high-current beams using those key components. We present our recent progress in this project. |
||
THPEA011 | Simulation of Magnetic Alloy Loaded RF Cavity and HOM Analysis | 3697 |
|
||
The RF cavity using Magnetic Alloy (MA) cores has been developed for achieving the high field gradient in J-PARC. For reducing the beam loading effects, the Q-value of the RF cavities in the Main Ring (MR) is controlled by using the cut-core configuration. In order to check the effect of HOMs between the cut-core gap, a simulation method of MA cores was studied and electromagnetic fields of excitation modes have been calculated by HFSS. We present the detail of the simulation method of MA cores and the HOM analysis of the cavity with the cut-cores. |
||
THPEA019 | Thermal Deformation of Magnetic Alloy Cores for J-PARC RCS RF Cavities | 3717 |
|
||
Several magnetic alloy cores of the RF cavities, which are installed in the 3 GeV rapid cycling synchrotron (RCS) of J-PARC have shown buckling after about two years operation. To find the reason, why the local deformation happened, we made a test setup. There we heat up MA cores in air by 500 kHz RF and measure the thermal deformation in order to collect information about the buckling process. The results obtained by comparing the expansion of cores made by different production methods are reported. |
||
THPEA071 | Cryogenics for the KEKB Superconducting Crab Cavities | 3834 |
|
||
Two superconducting crab cavities were successfully installed into the KEKB accelerator in January 2007. Since then the crab cavities have been in stable operation for 3 years up to now, thanks to reliable operation of the cryogenic system of the KEKB including a large-scale helium refrigerator. This means that the cryostat for the crab cavities was well designed and constructed properly, although there are some technical complexities in the cryostat, such as two helium vessels in a cryostat, a movable coaxial coupler which is cooled with liquid helium and so on. The KEKB cryogenic system was also appropriately modified to operate the two crab cavity cryostats stably. This cryogenic system is described in this presentation. A calorimetric method to measure the Q-factors of the crab cavities is suggested, which employs an electric compensation heater in the cryostat, instead of the conventional method, which measures the descending rate of liquid helium level. Measurement results of the Q-factors of crab cavities after being assembled in the cryostat and after being installed into the KEKB accelerator are compared with the vertical test results. |
||
MOPEC065 | Recent Status and Future Plan of J-PARC MA Loaded RF Systems | 615 |
|
||
The Japan Proton Accelerator Complex includes the 3GeV rapid cycling synchrotron (RCS) and the 50GeV main ring synchrotron (MR). Both synchrotrons use the high field gradient magnetic alloy (MA) loaded cavities. In RCS, 11 RF systems have been fully operational since December 2008. The RCS RF systems are operated with dual-harmonic acceleration voltages. Beam acceleration and bunch shape manipulation are efficiently taking place. 120kW of the neutron user operation was started at the Material and Life science facilities in November 2009. In MR synchrotron, the 5th RF system were installed in August 2009, and therefore 5 RF systems are now in operation. Beam commissioning for delivering protons to the hadron facility and neutrino beam experimental facility are under way. The neutrino user experiment is intended to start January 2010. Proton beam operation with more than 100kW is required. The approaches to realizing high intensity operation and the MR upgrade plan will be presented. |
||
TUPEA050 | Dual-harmonic Phase Control in the J-PARC RCS | 1443 |
|
||
The wide-band RF cavities in the J-PARC RCS are operated in the dual-harmonic operation, in which each single cavity is driven by a superposition of the fundamental and the second harmonic RF signals. By the dual-harmonic operation large amplitude second harmonic signals for the bunch shape manipulation are generated without extra cavities. The phase control of the second harmonic RF is a key for the bunch shape manipulation. The fundamental RF signal is controlled by the phase feedback loop to damp the dipole oscillation. The second harmonic is locked to the phase of the vector-sum phase of the fundamental RF signals. We present the system detail and the performance in the beam operation of the RCS. |
||
TUPEA051 | Application of Digital Narrow Band Noise to J-PARC Main Ring | 1446 |
|
||
Applying narrow band longitudinal noise to the beam in J-PARC Main Ring in flattop, while the acceleration voltage is off might help to counteract the effect of ripple on the slow extraction. For this purpose, a complex noise sequence output by DSP modulates a custom made DDS synthesizer to create single side spectra without carrier. The noise is calculated starting from a description in frequency domain. Then an algorithm creates narrow band spectra with optimized behavior in time domain. Frequency domain data is transformed to time domain, and the amplitude is smoothed. The smoothed data is transformed back to frequency domain, and the spectral shape is restored. This process repeats until the amplitude in time domain has converged, while the desired spectrum shape is preserved. Noise generated in this way can be tailored for different requirements. We show the signal properties, the hardware, and preliminary beam test results, when the noise is applied to the MR RF system. |
||
THPEA016 | Developments of Magnetic Alloy Cores with Higher Impedance for J-PARC Upgrade | 3711 |
|
||
Magnetic alloy cavities are successfully used for J-PARC synchrotrons. These cavities generate much higher RF voltage than ordinary ferrite cavities. For future upgrades of J-PARC facilities, a higher field gradient is necessary. It was found that the characteristics of magnetic alloy is improved by a new annealing scheme under magnetic field. A large production system using an old cyclotron magnet is under construction for the J-PARC upgrade. The status of core development will be reported. |
||
THPEA022 | Condition of MA Cores in the RF Cavities of J-PARC Synchrotrons after Several Years of Operation | 3723 |
|
||
We have been operating the RF cavities loaded with MA cores with a high field gradient of more than 20 kV/m since October 2007. We have been measuring the RF cavity impedance at the shutdown periods, and we detected the impedance reductions of RCS RF cavities on January and June 2009. Taking out the RF cavities from the beam line and opening them, we found that many of cores showed a buckling at the inner radius. Also detachment of the epoxy coating intended to prevent rusting was observed. We report the detail of condition of MA cores and the relation between the impedance reduction and core condition. |