Paper | Title | Page |
---|---|---|
WEOBRA03 | Beam Break-up Estimates for the ERL at BNL | 2441 |
|
||
A prototype ampere-class superconducting energy recovery linac (ERL) is under advanced construction at BNL. The ERL facility is comprised of a five-cell SC Linac plus a half-cell SC photo-injector RF electron gun, both operating at 703.75 MHz. The facility is designed for either a high-current mode of operation up to 0.5 A at 703.75 MHz or a high-bunch-charge mode of 5 nC at 10 MHz bunch frequency. The R&D facility serves a test bed for an envisioned electron-hadron collider, eRHIC. The high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory, and requires to determination of HOM tolerances for a cavity upgrade. The niobium cavity has been tested at superconducting temperatures and has provided measured dipole shunt impedances for the estimate of a beam breakup instability. The facility will be assembled with a highly flexible lattice covering a vast operational parameter space for verification of the estimates and to serve as a test bed for the concepts directed at future projects. |
||
|
||
MOPEC033 | RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9 | 531 |
|
||
During the second half of Run-9, the Relativistic Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points with both longitudinal and vertical spin direction. Despite an increase in the peak luminosity by up to 40%, the average store luminosity did not increase compared to previous runs. We discuss the luminosity limitations and polarization performance during Run-9. |
||
MOPD053 | Conceptual Design of the ESS LINAC | 804 |
|
||
A three year design update for the European Spallation Source (ESS) linac is just starting and a full review of this work will be presented. The acceleration in the medium energy part of the LINAC using the spoke cavities have been optimized and the rest of the machine has been redesigned to incorporate this optimization. The ESS LINAC will deliver an average power of 5~MW to the target in the nominal design and the possibility to upgrade to 7.5~MW has been included in all the design steps. Acknowledgments to all the people in the ESS LINAC Reference Group. |