Paper | Title | Page |
---|---|---|
MOPD072 | Optical Measurement of Transverse Laser Cooling with Synchro-Betatron Coupling* | 858 |
|
||
Experiments of transverse laser cooling for 24Mg+ beam have been performed at the small ion storage and cooler ring, S-LSR. It is predicted that the longitudinal cooling force is transmitted to the horizontal direction with synchro-betatron coupling at the resonant condition*. The laser system consists of a 532nm pumping laser, a ring dye laser with variable wavelength around 560nm, and a frequency doubler. The horizontal beam size and the longitudinal momentum spread were optically measured by a CCD and a PAT (Post Acceleration Tube) respectively**, ***. The CCD measures the beam size by observing spontaneous emission from the beam and records in sequence of 100ms time windows the development of the beam profile. The time variation of the beam size after beam injection indicates the transverse cooling time. The initial horizontal beam size, which was about 1mm, was decreased by 0.13mm in 1.5s. The longitudinal momentum spread measured by PAT is increased at the resonant condition. This suggests transverse temperature was transferred to longitudinal direction by synchro-betatron coupling. Both measurements denote the horizontal cooling occurred only in the resonant condition ****. * H. Okamoto, Phys. Rev. {E50}, 4982 (1994) |
||
MOPD073 | Transverse Laser Cooling by Synchro-betatron Coupling | 861 |
|
||
Transverse laser cooling with the use of a synchro-betatron coupling is experimentally demonstrated at the ion storage/cooler ring S-LSR. Bunched 40keV 24Mg+ beams are cooled by a co-propagating laser with a wavelength of 280nm. Synchrotron oscillation and horizontal betatron oscillation are coupled by an RF drifttube at a finite dispersive section (D = 1.1m) in order to transmit longitudinal cooling force to the horizontal degree of freedom*. Time evolution of horizontal beam size during laser cooling was measured by a CCD camera**. Horizontal beam sizes were reduced by 0.13mm within 1.5s after injection when the tune values satisfy a difference resonance condition, νs - νh = integer, at the operating tunes of (νh, νv, νs)=(2.067, 1.104, 0.067) and (2.058, 1.101, 0.058). Without resonance condition, the size reduction was negligibly small. The momentum spread was 1.7x10-4 on the resonance otherwise 1.2x10-4. These results show that the horizontal heats are transferred to the longitudinal direction through the synchro-betatron coupling with the resonance condition and are cooled down by a usual longitudinal bunched beam laser cooling. * H. Okamoto, Phys. Rev. E 50, 4982 (1994). |
||
MOPD092 | The Diagnostics System at the Cryogenic Storage Ring CSR | 918 |
|
||
A cryogenic storage ring (CSR) is under construction at MPI für Kernphysik, which will be a unique facility for low velocity phase space cooled ion beams. Among other experiments the cooling and storage of molecular ions in there rotational ground state is planed. To meet this requirement the ring must provide a vacuum with a residual gas density below 10000 molecules/cm3, which will be achieved by cooling the vacuum chamber of the ion beam to 2-10 K. The projected stored beam current will be in the range of 1 nA - 1 μA. The resulting low signal strengths on the beam position pickups, current monitors and Schottky monitor put strong demands on these diagnostics tools. The very low residual gas density of the CSR does not allow using a conventional residual gas monitor to measure the profile of the stored ion beam. Other methods were investigated to measure the profile of a stored ion beam. In the paper an overview of the CSR diagnostics tool and diagnostics procedures will be given. |