A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Giovannozzi, M.

Paper Title Page
MOOCRA01 The Magnetic Model of the LHC in the Early Phase of Beam Commissioning 55
 
  • E. Todesco, N. Aquilina, B. Auchmann, L. Bottura, M.C.L. Buzio, R. Chritin, G. Deferne, L. Deniau, L. Fiscarelli, J. Garcia Perez, M. Giovannozzi, P. Hagen, M. Lamont, G. Montenero, G.J. Müller, S. Redaelli, RV. Remondino, F. Schmidt, R.J. Steinhagen, M. Strzelczyk, M. Terra Pinheiro Fernandes Pereira, R. Tomás, W. Venturini Delsolaro, J. Wenninger, R. Wolf
    CERN, Geneva
  • N.J. Sammut
    University of Malta, Faculty of Engineering, Msida
 
 

The relation between field and current in each family of the Large Hadron Collider magnets is modeled with a set of empirical equations (FiDeL) whose free parameters are fitted on magnetic measurements. They take into account of residual magnetization, persistent currents, hysteresis, saturation, decay and snapback during initial part of the ramp. Here we give a first summary of the reconstruction of the magnetic field properties based on the beam observables (orbit, tune, coupling, chromaticity) and a comparison with the expectations based on the large set of magnetic measurements carried out during the 5-years-long production. The most critical issues for the machine performance in terms of knowledge of the relation magnetic field vs current are pinned out.

 

slides icon

Slides

 
MOPEC010 LHC Aperture Measurements 477
 
  • S. Redaelli, M.C. Alabau Pons, M. Giovannozzi, G.J. Müller, F. Schmidt, R. Tomás, J. Wenninger
    CERN, Geneva
 
 

The mechanical aperture of the Large Hadron Collider (LHC) is a critical parameter for the operation of the machine due to the high stored beam intensities in the superconducting environment. Betatron and momentum apertures must be therefore precisely measured and optimized. In this paper, we present the results of beam-based measurements of the LHC aperture. The experimental results are compared with the expectations from the as-built model of the LHC aperture, taking into account the optics imperfections of the superconducting magnets. The impact of these measurements on various aspects of the LHC operation are also discussed.

 
MOPEC011 The Online Model for the Large Hadron Collider 480
 
  • S. Redaelli, M.C. Alabau Pons, K. Fuchsberger, M. Giovannozzi, M. Lamont, G.J. Müller, F. Schmidt
    CERN, Geneva
  • X. Buffat
    EPFL, Lausanne
 
 

The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a precise knowledge of the critical beam and machine parameters. In recent years efforts were devoted to the design of a software infrastructure aimed at mimicking the behavior of the LHC. An online model of the machine, based on the accelerator design tool MADX, has been developed to support the commissioning and the operation of the LHC. This model is integrated into the JAVA-based LHC software framework and provides the full computing power of MADX, including the best knowledge of the machine aperture and magnetic models. The MADX implementation is server-based and provides various facilities for optics computation to other application clients. In this paper, we present the status of the MADX online application and illustrate how it has been used during the LHC commissioning. Possible future implementations are also discussed.

 
MOPEC015 Single-pass Beam Measurements for the Verification of the LHC Magnetic Model 489
 
  • F. Zimmermann, M. Giovannozzi, S. Redaelli, Y. Sun, R. Tomás, W. Venturini Delsolaro
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.

 
MOPEC016 Interaction of Macro-Particles with the LHC Proton Beam 492
 
  • F. Zimmermann, M. Giovannozzi
    CERN, Geneva
  • A. Xagkoni
    National Technical University of Athens, Athens
 
 

We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermal-insulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macro-particles are solved numerically to determine the time spent by such "dust" particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

 
MOPEC037 High Beta Operation Scenarios for Crab Cavities in the Insertion Region 4 of the CERN Large Hadron Collider 540
 
  • R. De Maria, R. Calaga
    BNL, Upton, Long Island, New York
  • M. Giovannozzi, Y. Sun, R. Tomás, F. Zimmermann
    CERN, Geneva
 
 

IR4 is a potential candidate for the installation of crab cavities in the CERN Large Hadron Collider. In this paper we present several operational scenarios in which the effect of the kick imparted by the cavity is enhanced by performing a dynamic unsqueeze of the beta function at collision energy. Linear optics, power supply requirements, beam aperture and finally potential luminosity increase studies will be discussed in order to rank and assess the feasibility of the various options.

 
TUXMH02 LHC Optics Model Measurements and Corrections 1232
 
  • R. Tomás, O.S. Brüning, M. Giovannozzi, M. Lamont, F. Schmidt, G. Vanbavinckhove
    CERN, Geneva
  • M. Aiba
    PSI, Villigen
  • R. Calaga, R. Miyamoto
    BNL, Upton, Long Island, New York
 
 

Optics stability during all phases of operation is crucial for the LHC. The optical properties of the machine have been optimized based on a detailed magnetic model of the SC magnets and on their sorting. Tools and procedures have been developed for rapid checks of beta beating, dispersion, and linear coupling, as well as for prompt optics correction. Initial optics errors, correction performance and optics stability from the first LHC run will be reported, and compared with expectations. Possible implications for the collimation cleaning efficiency and LHC machine protection will be discussed.

 

slides icon

Slides

 
THOBMH02 Results from the 2009 Beam Commissioning of the CERN Multi-turn Extraction 3619
 
  • M. Giovannozzi, E. Benedetto, A. Blas, T. Bohl, S. Cettour Cave, K. Cornelis, D.G. Cotte, H. Damerau, M. Delrieux, J. Fleuret, F. Follin, T. Fowler, P. Freyermuth, H. Genoud, S.S. Gilardoni, S. Hancock, O. Hans, Y. Le Borgne, D. Manglunki, E. Matli, G. Metral, E. Métral, M. Newman, L. Pereira, F.C. Peters, Y. Riva, F. Roncarolo, L. Sermeus, R.R. Steerenberg, B. Vandorpe, J. Wenninger
    CERN, Geneva
  • F. Franchi
    ESRF, Grenoble
 
 

Following the analysis of the results obtained during the first year of beam commissioning of the CERN multi-turn extraction, a number of changes have been introduced in the beam manipulations performed in the CERN Proton Synchrotron. This includes a different control of the linear chromaticity, the setting of the non-linear magnets used to split the beam, and the longitudinal structure in the PS. The results obtained during the 2009 run are presented and discussed in detail, including the beam performance in both the PS and the SPS, as well as the optics measurements in the transfer line between the two circular machines.

 

slides icon

Slides

 
THPEB006 Optics Measurements and Transfer Line Matching for the SPS Injection of the CERN Multi-turn Extraction Beam 3888
 
  • E. Benedetto
    National Technical University of Athens, Zografou
  • G. Arduini, S. Cettour Cave, F. Follin, S.S. Gilardoni, M. Giovannozzi, F. Roncarolo
    CERN, Geneva
 
 

Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in detail in the paper.

 
THPE079 Proposal of a Relationship between Dynamic Aperture and Intensity Evolution in a Storage Ring 4704
 
  • M. Giovannozzi
    CERN, Geneva
 
 

A scaling law for the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers, about ten years ago. The use of fundamental theorems of the theory of dynamical systems allowed showing that the dynamic aperture has a logarithmic dependence on time. In this paper this result, proven by mean of numerical simulations, is used as a basis for deriving a scaling law for the intensity evolution in a storage ring. The proposed scaling law is also tested against experimental data showing a remarkable agreement.

 
THPE080 Dynamic Aperture Computation for the as-built CERN Large Hadron Collider 4707
 
  • M. Giovannozzi
    CERN, Geneva
 
 

During the design phase of the CERN Large Hadron Collider the dynamic aperture, i.e., the domain in phase space where stable motion occurs, was used as figure-of-merit to specify the field quality of the various classes of superconducting magnets. The programme of magnetic measurements performed within the framework of the magnets' acceptance process has produced a large amount of information available, which can be used to estimate the value of the dynamic aperture for the actual machine. In this paper the results of massive numerical simulations based on the measured field quality, both for injection and top energy configurations, are presented and discussed in detail.

 
THPE081 First Results of Space Charge Simulations for the Novel Multi-turn Injection 4710
 
  • M. Giovannozzi, M. George
    CERN, Geneva
  • F. Franchi
    ESRF, Grenoble
 
 

Recently, a novel multi-turn injection technique was proposed. It is based on beam merging via resonance crossing. The various beamlets are successively injected and merged back by crossing a stable resonance generated by non-linear magnetic fields. Space charge is usually a crucial effect at injection in a circular machine and it could have an adverse impact on the phase space topology required for merging the various beamlets. Numerical simulations were performed to assess the stability of the merging process as a function of injected beam charge. The results are presented and discussed in this paper.