A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gilardoni, S.S.

Paper Title Page
MOPEB016 Development of Upgraded Magnetic Instrumentation for CERN's Real-time Reference Field Measurement Systems 310
 
  • M.C.L. Buzio, P. Galbraith, S.S. Gilardoni, D. Giloteaux, G. Golluccio, C. Petrone, L. Walckiers
    CERN, Geneva
  • A. Beaumont
    EBG MedAustron, Wr. Neustadt
 
 

At CERN, the control of five of the accelerators in the injector chain (i.e. PS, PS Booster, SPS, LEIR and AD) is based upon real-time magnetic measurements in a reference magnet. These systems ("B-trains") include usually a field marker to signal the achievement of a given field value, complemented by one or more pick-up coils to integrate flux changes. Recently, some issues have been raised concerning long-term reliability and possible performance improvements, in terms of both resolution and operational flexibility, for these systems. This paper reports the results of R&D activities launched to address these concerns, namely: the development of a novel ferrite gradient compensator to enable dynamic NMR field marking in the PS' combined function magnets; and the preliminary design of a standardized electronic acquisition and conditioning system aimed at enabling the requested improvements and at facilitating rapid maintenance interventions.

 
TUPD049 Transverse Mode Coupling Instability Measurements at Transition Crossing in the CERN PS 2036
 
  • S. Aumon
    EPFL, Lausanne
  • S. Aumon, M. Delrieux, P. Freyermuth, S.S. Gilardoni, E. Métral, G. Rumolo, B. Salvant, R.R. Steerenberg
    CERN, Geneva
 
 

Transition crossing in the CERN PS is critical for the stability of high intensity beams, even with the use of a second order gamma jump scheme. The intense single bunch beam used for the neutron Time-of-Flight facility (n-ToF) needs a controlled longitudinal emittance blowup at flat bottom to prevent a fast single-bunch vertical instability from developing near transition. This instability is believed to be of Transverse Mode Coupling (TMCI) type. A series of measurements taken throughout 2008 and 2009 aim at using this TMCI observed on the ToF beam at transition, as a tool for estimating the transverse global impedance of the PS. For this purpose, we compare the measurement results with the predictions of the HEADTAIL code and find the matching parameters. This procedure also allows a better understanding of the different mechanisms involved and can suggest how to improve the gamma jump scheme for a possible intensity upgrade of the n-ToF beam.

 
WEPEB042 Optimization of the Position of the Radial Loop Pickups in the CERN PS 2782
 
  • S. Aumon
    EPFL, Lausanne
  • S. Aumon, H. Damerau, S.S. Gilardoni
    CERN, Geneva
 
 

A part of the beam losses at transition crossing of high intensity beams in the CERN PS have been attributed to an excursion of the closed orbit. The orbit jump occurs simultaneously with the jump of the transition energy triggered by pulsed quadrupoles. Investigations showed that the position of the pickups used for the radial loop system was not optimized with respect to the dispersion change caused by the fast change of the transition energy. Thanks to new electronics of the orbit measurement system, turn-by-turn orbit data could be recorded around transition crossing. Their analysis, together with calculations of the transverse optics, allowed determining a new choice of pickup positions for the radial loop. In comparison to the previous pickup configuration, the new configuration improves the mean radial position not only during transition crossing, but all along the acceleration cycle.

 
THPEB006 Optics Measurements and Transfer Line Matching for the SPS Injection of the CERN Multi-turn Extraction Beam 3888
 
  • E. Benedetto
    National Technical University of Athens, Zografou
  • G. Arduini, S. Cettour Cave, F. Follin, S.S. Gilardoni, M. Giovannozzi, F. Roncarolo
    CERN, Geneva
 
 

Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in detail in the paper.

 
THPE019 CERN Proton Synchrotron Working Point Matrix for Extended Pole Face Winding Powering Scheme 4551
 
  • P. Freyermuth, D.G. Cotte, M. Delrieux, H. Genoud, S.S. Gilardoni, K. Hanke, O. Hans, S. Mataguez, G. Metral, F.C. Peters, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva
 
 

The CERN Proton Synchrotron has been continuously improving its beam performances since 1959. The working point parameters of the accelerator are mainly controlled by dedicated windings installed on the poles of the main combined function magnets. In 2007, the power supplies of these windings were renovated and extended from three to five independent groups, allowing exploration of new working point settings. This configuration offers the flexibility of several adjustment strategies such as leaving one current free or to control an additional physical parameter, like Q''h. A non-linear chromaticity measurement campaign, at different beam energies, resulted in matrices defining the relationship between the five pole face winding currents and the four beam parameters Qh, Qv, Xih, and Xiv. Each cell of these matrices was fitted against energy. The final result is a single matrix which is now used by the operational software to trim the working point. This paper summarises this measurement campaign by presenting the resulting matrix with a brief overview of the adjustment tools and strategy. Furthermore a few future possible benefits of this control enhancement will be discussed.

 
THOBMH02 Results from the 2009 Beam Commissioning of the CERN Multi-turn Extraction 3619
 
  • M. Giovannozzi, E. Benedetto, A. Blas, T. Bohl, S. Cettour Cave, K. Cornelis, D.G. Cotte, H. Damerau, M. Delrieux, J. Fleuret, F. Follin, T. Fowler, P. Freyermuth, H. Genoud, S.S. Gilardoni, S. Hancock, O. Hans, Y. Le Borgne, D. Manglunki, E. Matli, G. Metral, E. Métral, M. Newman, L. Pereira, F.C. Peters, Y. Riva, F. Roncarolo, L. Sermeus, R.R. Steerenberg, B. Vandorpe, J. Wenninger
    CERN, Geneva
  • F. Franchi
    ESRF, Grenoble
 
 

Following the analysis of the results obtained during the first year of beam commissioning of the CERN multi-turn extraction, a number of changes have been introduced in the beam manipulations performed in the CERN Proton Synchrotron. This includes a different control of the linear chromaticity, the setting of the non-linear magnets used to split the beam, and the longitudinal structure in the PS. The results obtained during the 2009 run are presented and discussed in detail, including the beam performance in both the PS and the SPS, as well as the optics measurements in the transfer line between the two circular machines.

 

slides icon

Slides