A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gandel, V.

Paper Title Page
MOPEC072 Simulation Based Analysis of the Anomalous RF Drifts of a Current Monitor at PSI Proton Accelerator Facilities 636
 
  • Y. Lee, P.-A. Duperrex, V. Gandel, D.C. Kiselev, U. Müller
    PSI, Villigen
 
 

A new current monitor (MHC5) based on a re-entrant cavity tuned at the 2nd RF harmonic (101.26 MHz) has been in operation since April 2009 at PSI. It monitors the current of the high intensity 590 MeV proton beam at 8 m downstream of the graphite meson production target (TgE). The scattered particles and their secondaries from TgE introduce a heavy thermal load approximately of 230 W on MHC5 at 2 mA beam intensity, which is carried away by active water cooling. The inhomogeneous temperature profile in MHC5 results in thermomechanical deformations which leads to a change in its HF electromagnetic characteristics. Indeed, an anomalous RF drifts were observed during initial operations, which had to be compensated for, to obtain correct beam current monitoring. In this paper, the physics of the observed RF drift is analyzed by using advanced multiphysics simulation technologies.

 
MOPE063 New On-line Gain Drift Compensation for Resonant Current Monitor under Heavy Heat Load 1122
 
  • P.-A. Duperrex, V. Gandel, D.C. Kiselev, Y. Lee, U. Müller
    PSI, Villigen
 
 

For high intensity beam operation (3mA, 1.8MW) in the PSI cyclotron, a new current monitor for proton beams has been installed during the 2009 maintenance period. This current monitor is an actively cooled re-entrant cavity with its resonance tuned at the 2nd RF harmonic (101 MHz). Operating this system presents several challenges due to the heavy shower of energetic particles, the resonator being placed 8 m behind a graphite target. The resonator is actively cooled with water, its external surface was blackened to improve the radiation cooling and its mechanical structure was optimized for good heat conduction. The resonance characteristics are extremely sensitive to structural changes of the resonator. Because of non-uniform temperature distribution and dynamical changes the observed gain drift during operation is of the order of 10%. To correct these drifts 2 tests signals 50 kHz off the RF frequency are measured on-line during beam operation. They provide an innovative mean to estimate and to correct on-line the resonator gain. This paper will present the measurement method and the achieved performances.

 
THPEC088 Simulation based optimization of a collimator system at the PSI proton accelerator facilities 4260
 
  • Y. Lee, V. Gandel, D.C. Kiselev, D. Reggiani, M. Seidel, S. Teichmann
    PSI, Villigen
 
 

A simulation based optimization of a collimator system at the 590 MeV PSI proton accelerator is presented, for the ongoing beam power upgrade from the current 1.2 MW [2 mA] towards 1.8 MW [3 mA]. The collimators are located downstream of the 4 cm thick graphite meson production target. These are designed to shape the optimal beam profile for low-loss beam transport to the neutron spallation source SINQ. The optimized collimators are predicted to withstand the beam intensity up to 3 mA, without sacrificing intended functionalities. The collimator system is under the heavy thermal load generated by a proton beam power deposition approximately of 240 kW at 3 mA, and it needs an active water cooling system. Advanced multiphysics simulations are performed for a set of geometric and material parameters, for the thermomechanical optimization of the collimator system. In particular, a FORTRAN subroutine is integrated into CFD-ACE+, for calculating local beam stopping power in the collimator system. Selected results are then compared with those of full MCNPX simulations.