Paper | Title | Page |
---|---|---|
TUOCMH01 | Pulse-to-pulse Beam Modulation and Event-based Beam Feedback Systems at KEKB Linac | 1271 |
|
||
Beam injections to KEKB and Photon Factory are performed with pulse-to-pulse modulation at 50Hz. Three very different beams are switched every 20ms in order to inject those beams into KEKB HER, LER and Photon Factory (PF) simultaneously. Human operators work on one of those three virtual accelerators, which correspond to three-fold accelerator parameters. Beam charges for PF injection and the primary electron for positron generation are 50-times different, and beam energies for PF and HER injection are 3-times different. Thus, the beam stabilities are sensitive to operational parameters, and if any instability in accelerator equipment occurred, beam parameter adjustments for those virtual accelerators have to be performed. In order to cure such a situation, beam energy and orbit feedback systems are installed that can respond to each of virtual accelerators independently. |
||
|
||
TUPEB054 | Design of Positron Damping Ring for Super-KEKB | 1641 |
|
||
Super-KEKB, an upgrade plan of the present KEKB collider, has recently changed its scheme from 'high current' option to 'nano-beam' scheme. In the latter the current is relatively low(4A/2.3A for LER/HER ring) compared to that of the high-current option(9.4A/4.1A), while the vertical beam size is squeezed to 60 nm at the interaction point to get the high luminosity. The emittance of the injected beam should be low and, since the Tousheck lifetime is very short(600 sec), the intensity of the positron beam is as high as 8 nC/pulse. For the electron beam a low-emittance high-intensity RF gun is adopted. For the positron beam a damping ring has been proposed. The design of the damping ring has been performed for the high-current option*. In this paper an updated design for the nano-beam scheme is presented. * Nucl. Instr. Meth. A 556 (2006) 13-19 |
||
TUPE091 | Recent Progress in the Energy Recovery Linac Project in Japan | 2338 |
|
||
Future synchrotron light source using a 5-GeV-class energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting active R&D efforts for that. We are developing super-brilliant DC photocathode guns, two types of cryomodules for both injector and main superconducting linacs, 1.3 GHz high CW-power rf sources, and other important components. We are also constructing a compact ERL for demonstrating the recirculation of low-emittance, high-current beams using those key components. We present our recent progress in this project. |
||
WEOAMH02 | Recent Progress of KEKB | 2372 |
|
||
KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB. |
||
|
||
WEPEA034 | Development and Operational Status of PF-Ring and PF-AR | 2561 |
|
||
KEK manages two synchrotron radiation sources, Photon Factory storage ring (PF-ring) of 2.5 GeV and Photon Factory advanced ring (PF-AR) of 6.5 GeV. These rings share an injector linac with the two main rings of KEK B-factory, 8-GeV HER and 3.5-GeV LER. Recently, the linac has succeeded in a pulse by pulse multi-energy acceleration. A top-up operation of PF-ring has been realized as the simultaneous continuous injection to the 3 rings, PF-ring, HER and LER. Development of new injection scheme using a pulsed sextupole magnet continues aiming at practical use in the top-up operation. A rapid-polarization-switching device consisting of tandem two APPLE-II type undulators has been developed at PF-ring. The first undulator was installed in 2008, and the second one will be installed in 2010 summer. PF-AR, operated in a single-bunch mode at all times, has been suffered from sudden lifetime drop phenomena attributed to dust trapping for many years. Using the movable electrodes installed for experiment, we confirmed that the discharge created by the electrode was followed by the dust trapping, and succeeded in a visual observation of luminous dust streaking in front of CCD cameras. |
||
WEPEB002 | Prototype of the Ethernet-based Power Supply Interface Controller Module for KEKB | 2683 |
|
||
Most of the magnet power supplies of the KEKB rings and beam transport lines are connected to the local control computers through ARCNET. For this purpose we have developed the Power Supply Interface Controller Module (PSICM), which is designed to be plugged into the power supply. It has a 16-bit microprocessor, ARCNET interface, trigger pulse input interface, and parallel interface to the power supply. According to the upgrade plan of the KEKB accelerators, more power supplies are expected to be installed. Although the PSICMs have worked without serious problem for 11 years, it seems too hard to keep maintenance for the next decade because some of the parts have been discontinued. Thus we decided to develop the next generation of the PSICM. Its major change is the use of the Ethernet instead of the ARCNET. On the other hand the specifications of the interface to the power supply are not changed at all. The new PSICM is named ePSICM (Ethernet-based Power Supply Interface Controller Module). The design of the ePSICM and the development of the prototype modules are in progress. |
||
WEPEB003 | Fully Embedded EPICS-based Control of Low Level RF System for SuperKEKB | 2686 |
|
||
Gazing at SuperKEKB project, a new control subsystem was designed and implemented to upgrade the low level RF system of the KEKB accelerator based on Experimental and Industrial Control System (EPICS). The new control subsystem comprises a uTCA, a PLC, and an industrial PC. Each card plugged in the uTCA chassis and the PLC function as an embedded Input / Output Controller (IOC) by running the EPICS core program on the Linux operating system. The industrial PC runs Extensible Display Manger on Linux to serve as an Operator Interface (OPI). This paper describes the details of the design and the implementation of the fully embedded EPICS-based low level RF control subsystem for SuperKEKB. |
||
WEPEB020 | Control of the Pulse Magnet Power Supply by EPICS IOC Embedded PLC | 2731 |
|
||
The EPICS embedded programmable logic controller (PLC) has been developed based on F3RP61-2L, a CPU module of a FA-M3R series PLC running Linux OS. The EPICS IOC resided in F3RP61-2L module can access the registers of sequence CPU modules and I/O modules of the PLC. The embedded EPICS PLC was applied to control the prototype of pulse magnet power supply and support functionality testing remotely. The system comprises various input/output modules and a CPU module with built-in Ethernet interface. The control information (status of the power supply, ON, OFF, warn up, reset, read/write voltage, etc.) can be accessed remotely using EPICS client tools. The EDM is selected to develop the GUI for itself. Efforts are summarized in this report. |
||
WEPEB055 | Straightness Alignment of Linac by Detecting Slope Angle | 2815 |
|
||
Profile shape measurements detecting profile slope angle, which corresponds to the differential of the profile shape, have been used for evaluating profile shapes highly precisely. They are hardly affected by scanning error in measurement and considered to have advantages for long distance measurements. Here, profile measurement using a level was adopted for straightness alignment of the KEK e-/e+ injector linac, considering the straightness alignment as a profile shape measurement. The slope angles between the alignment base plates of the linac could be detected with reproducibility of 10 micro-rad (σ) by sequential measurement interval of 1 to 2 m. The reproducibility of the straightness derived from the angle measurements was 42 micrometer (σ) for 69 m of the measurement distance and agreed well with the estimated value based on our error propagation model. These results show that straightness reproducibility of better than 1 mm (2-σ) can be achieved for 500 m of the KEK e-/e+ injector linac by sampling interval of 2m, and for 10 km of the ILC linac by sampling interval of 20 cm. |
||
THPD007 | The Linac Upgrade Plan for SuperKEKB | 4290 |
|
||
The next generation B-factory 'SuperKEKB' project whose target luminosity is 8 ×1035 cm-2s-1 is under consideration. A 'nano-beam scheme' is introduced to the SuperKEKB. In the scheme, an electron beam (Energy = 7 GeV, Charge = 3-4 nC/bunch, Vertical emittance =2.8 x 10-5 m) and a positron beam (Energy = 4 GeV, Charge = 4 nC/bunch, Vertical emittance = 1.6 x 10-5 m), are required at the end of injector linac. They are quite challenging targets for the present linac. In order to meet the requirements, we will introduce some new components to the linac. They are a photo-cathode RF gun for an electron beam, a positron capture section using new L-band cavities, a newly designed positron-generation target system and a damping ring for a positron beam. This presentation shows a strategy of our injector upgrade. |