Paper | Title | Page |
---|---|---|
MOPEA059 | Laser Acceleration of Negative Ions by Coulomb Implosion Mechanism | 211 |
|
||
Intense laser pulse is utilized to generate compact sources of electrons, ions, x-rays, neutrons. Recently, high energy negative ions are also observed in experiments using cluster or gas target*. To explain the acceleration of negative ions from laser-generated plasmas, we proposed Coulomb implosion mechanism**. When clusters or underdense plasmas are irradiated by an intense laser pulse, positive ions are accelerated inside the clusters or in the self-focusing channel by the Coulomb explosion. This could lead to the acceleration of negative ions towards target center. The maximum energy of negative ions is typically several times lower than that of positive ions. A theoretical description and corresponding Particle-in-Cell simulations of Coulomb implosion mechanism are presented. We show the evidence of the negative ion acceleration observed in our experiments using high intensity laser pulse and the cluster-gas targets. * S.Ter-Avetisyan et al., J. Phys. B 37 (2004) 3633. |
||
TUPE027 | Target Ionization Dynamics by Irradiation of X-ray Free-electron Laser Light | 2200 |
|
||
Interactions of x-ray free electron laser (XFEL) light with a single cluster target are numerically investigated. The irradiation of XFEL light onto material leads to the ionization of the target by photo-ionization and generation of high energy electrons. This results in the further ionization via Auger effect, collisional ionization, and field ionization. The ionization rate or time scale of each process depends on the condition of XFEL (intensity, duration, photon energy) and target size. In order to understand the ionization dynamics, we used a three-dimensional Particle-in-Cell code which includes the plasma dynamics as well as relevant atomic processes such as photo-ionization, the Auger effect, collisional ionization/relaxation, and field ionization. It is found that as the XFEL intensity increases to as high as roughly 1021 photons/pulse/mm2, the field ionization, which is the dominant ionization process over the other atomic processes, leads to rapid target ionization. The target damage due to the irradiation by XFEL light is numerically evaluated, which gives an estimation of the XFEL intensity so as to suppress the target damage within a tolerable range for imaging. * T. Nakamura, et al., Phys. Rev. A, vol. 80, 053202 (2009) |
||
|