A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fujita, T.

Paper Title Page
MOOCMH02 Overview of Short Pulse X-ray Generation using Crab Cavities at SPring-8 39
 
  • T. Fujita, H. Hanaki, T. Nakazato
    JASRI/SPring-8, Hyogo-ken
  • K. Akai, K. Ebihara, T. Furuya, K. Hara, T. Honma, K. Hosoyama, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai, K. Nakanishi, M. Ono, Y. Yamamoto
    KEK, Ibaraki
  • M. Matsuoka, K. Sennyu, T. Yanagisawa
    MHI, Tokyo
  • M. Monde
    Mitsubishi Heavy Industries Ltd. (MHI), Takasago
 
 

We have been developing a system to generate a short pulse X-ray using crab cavities at SPring-8 Storage Ring. The ring holds 30-m long straight sections and the vertical beam size at the center of the straight sections is 6.5 micrometers in standard deviation. If we install four superconducting crab cavities and a mini-pole undulator in one of the straight sections, we can convert the time distribution of the electron bunch into the spatial distribution. After slicing the emitted photons with vertical slits, we can obtain a sub-picosecond X-ray pulse. In this scheme, the maximum repetition rate of the short pulse X-ray is the same as the acceleration frequency of the ring (508MHz) and user experiments at other beam-lines are not disturbed by this short pulse generation. We are planning to install KEKB type crab cavities as vertical deflectors. Phase fluctuation among crab cavities must be reduced less than 14 mdeg in order to avoid residual deflection in the vertical direction. In this paper, we report an overview of the short pulse generation scheme and topics of hardware development for stabilization of the RF phase fluctuation.

 

slides icon

Slides

 
MOPE005 Countermeasure to Suppress the Filling Pattern Dependence of the BPM Electronics of SPring-8 Storage Ring 960
 
  • S. Sasaki, T. Fujita
    JASRI/SPring-8, Hyogo-ken
 
 

The signal processing electronics of the SPring-8 Storage Ring BPM were replaced during the summer shutdown of 2006, and put into operation. However, a large filling pattern dependence was observed. The cause was attributed to the nonlinear response of the diodes to large pulse signals. The diode were attached in front of the RF switches for protection from the electrostatic discharge damages on the switch IC. We took a countermeasure for the filling pattern dependence by reducing the pulse height with a band pass filter (BPF) in front of each channel. The BPF were attached and put into the operation from November 2008. The effect of the BPF was evaluated using the beam with changing the filling patterns and repeating the position measurements. The differences of the measured position data across the filling pattern change were found to be within 10μmeters, which was the same amount of the orbit drift during the filling pattern change.