Paper | Title | Page |
---|---|---|
MOPE007 | Measurement of Low-Emittance Beam with Coded Aperture X Ray Optics at CesrTA | 966 |
|
||
An x-ray beam size monitor based on coded aperture imaging* has been developed at CesrTA, for the purpose of making bunch-by-bunch, turn-by-turn measurements of low emittance beams. Using low-emittance beam (~44 pm, or 16 microns at the x-ray source point) we have been able to make detailed comparisons between the measured mask response and that predicted by theory, validating our simulations of the mask response. In turn, we demonstrate the ability to measure both integrated and single-bunch turn-by-turn beam sizes and positions for monitoring the progress of the low-emittance tuning of the machine, and for electron-cloud instability-related beam dynamics studies. * J.W. Flanagan et al., EPAC08, 1029 (2008). |
||
MOPE008 | Improved Measurement of Crabbing Angle by a Streak Camera at KEKB | 969 |
|
||
Crab cavities were installed in the KEKB rings in order to increase the luminosity. We measured the tilt of the bunches in the x-z plane using streak cameras. In a previous report*, the measured tilt in the HER was 2 times smaller than the expected crabbing angle, while the LER measurement was consistent with that expected. After the streak camera's vertical sweep speed was calibrated, the results were consistent with the expected crabbing angle in both rings. * H. Ikeda et al., PAC07, 4018. |
||
MOPE090 | CesrTA x-Ray Beam Size Monitor Operation | 1194 |
|
||
We report on the design and operation of the CesrTA x-ray beam size monitor (xBSM). The xBSM resolution must be sufficient to measure vertical beam sizes of order 10um by imaging 2-4keV synchrotron radiation photons onto a one-dimensional photodiode array. Instrumentation in the evacuated x-ray beam line includes upstream interchangeable optics elements (slits, coded apertures, and Fresnel zone plates), a monochromator and an InGaAs photodiode detector. The readout is a beam-synchronized FADC that is capable of parallel measurement of consecutive bunches with 4ns spacing. The xBSM has been used to measure beam sizes during the August 2009, November 2009, and April 2010 runs. Single turn measurements are fit to characteristic image shapes to extract beam sizes independent of position variations. The turn-averaged beam size provides feedback for low-emittance tuning. |
||
TUPD008 | Measurement of Wakefield Effects caused by Electron Cloud at KEKB | 1934 |
|
||
Electron cloud instabilities are a great concern for the KEKB, an electron/positron collider. In order to study wakefield effects of electron cloud, a test bunch was injected behind a bunch train with the solenoid fields off, where cloud density rapidly decayed. A current-dependent tune shift and the tune spread of a test bunch were measured as a function of the bunch current while varying the bucket position of a test bunch. The vertical tune shift indicated a strong defocusing force together with widened tune spread in a region of relatively low cloud density and low bunch current. However, the vertical tune shift changed to a focusing force at high cloud density and high bunch current. On the other hand, the horizontal and vertical tune spreads tended to approach a constant value as increasing the bunch current. The turning current is approximately equal to the threshold current of the vertical size blow-up. |
||
WEOAMH02 | Recent Progress of KEKB | 2372 |
|
||
KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB. |
||
|
||
TUYMH02 | Electron Cloud at Low Emittance in CesrTA | 1251 |
|
||
The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed. |
||
|