A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fischer, W.

Paper Title Page
MOPEC024 RHIC BBLR Measurements in 2009 510
 
  • R. Calaga, W. Fischer, G. Robert-Demolaize
    BNL, Upton, Long Island, New York
 
 

Long range beam-beam experiments were conducted during the Run 2009 in the yellow and the blue beams of the RHIC accelerator with DC wires. The effects of a long-range interaction with a DC wire on colliding and non-colliding bunches with the aid of orbits, tunes, and losses were studied. Results from distance and currents scans and an attempt to compensate a long-range interaction with a DC wire is presented.

 
MOPEC026 Status of the RHIC Head-on Beam-beam Compensation Project 513
 
  • W. Fischer, E.N. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R.F. Lambiase, Y. Luo, M. Mapes, W. Meng, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York
 
 

In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design consideration, present the main parameters, and estimate the performance gains.

 
MOPEC035 Optimizing the Beam-beam Alignment in an Electron Lens using Bremsstrahlung 537
 
  • C. Montag, W. Fischer, D.M. Gassner, P. Thieberger
    BNL, Upton, Long Island, New York
  • E. Haug
    University of Tuebingen, Tuebingen
 
 

Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

 
TUXMH01 RHIC Luminosity Upgrade Program 1227
 
  • W. Fischer
    BNL, Upton, Long Island, New York
 
 

The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the development of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

 

slides icon

Slides

 
TUPEA082 Versatile Device for In-situ Discharge Cleaning and Multiple Coatings of Long, Small Diameter Tubes 1509
 
  • A. Hershcovitch, M. Blaskiewicz, J.M. Brennan, W. Fischer, C.J. Liaw, W. Meng
    BNL, Upton, Long Island, New York
  • A.X. Custer, M.Y. Erickson, N.Z. Jamshidi, H.J. Poole
    PVI, Oxnard
  • N. Sochugov
    Institute of High Current Electronics, Tomsk
 
 

Electron clouds, which can limit machine performance, have been observed in many accelerators including RHIC at BNL. They can be suppressed by low secondary electron yield beam pipe surfaces. Additional concern for the RHIC machine, whose vacuum chamber is made from relatively high resistivity 316LN stainless steel, is high wall resistivity that can result in unacceptably high ohmic heating for superconducting magnets. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a TiN or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprising of staged magnetrons mounted on a mobile mole for deposition of about 5 μm (a few skin depths) of Cu followed by about 0.1 μm of a-C. As a first step, a 15-cm Cu cathode magnetron is being designed and fabricated, after which, 30-cm long sample of the RHIC pipe are to be Cu coated. Deposition rates and affects on RF resistivity are to be measured.

 
TUPEB050 Ion Bunch Length Effects on the Beam-beam Interaction in a High Luminosity Ring-ring Electron-ion Collider with Head-on Beam-beam Compensation 1632
 
  • C. Montag, W. Fischer
    BNL, Upton, Long Island, New York
 
 

The luminosity of a ring-ring electron-ion collider is limited by the beam-beam effect on the electrons. Simulation studies have shown that for short ion bunches this limit can be significantly increased by head-on beam-beam compensation via an electron lens. However, due to the large beam-beam parameter experienced by the electrons, together with an ion bunch length comparable to the beta-function at the IP, electrons perform a sizeable fraction of a betatron oscillation period inside both the long ion bunches and the electron lens. Recent results of our simulation studies of this effect will be presented.

 
TUPEB053 Measurements of Fast Transition Instability in RHIC 1638
 
  • V. Ptitsyn, M. Blaskiewicz, W. Fischer, R.C. Lee, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

A fast transition instability presents a limiting factor for ion beam intensity in RHIC. Several pieces of evidence show that electron clouds play an important role in establishing the threshold of this instability. In RHIC Runs 7 and 8 dedicated measurements of the instability, using different beam instrumentation tools (Button BPM, Wall Current Monitor, transition monitors) were done in order to observe the instability development over hundreds turns. The papers presents and discusses the results of those measurements in time and frequency domains.

 
TUPD065 Long-Range Beam-Beam Compensation in RHIC 2072
 
  • H.J. Kim, T. Sen
    Fermilab, Batavia
  • W. Fischer
    BNL, Upton, Long Island, New York
 
 

In order to avoid the effects of long-range beam-beam interactions which produce beam blow-up and deteriorate beam life time, a compensation scheme with current carrying wires has been proposed. Two long-range beam-beam compensators were installed in RHIC rings in 2006. The effects of the compensators have been experimentally investigated. An indication was observed that the compensators are beneficial to beam life time in measurements performed in RHIC during 2009. In this paper, we report the effects of wire compensator on beam loss and emittance for proton-proton beams at collision energy.

 
MOPEC023 RHIC Performance for FY10 200 GeV Au+Au Heavy Ion Run 507
 
  • K.A. Brown, L. Ahrens, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, C. Carlson, R. Connolly, T. D'Ottavio, R. De Maria, K.A. Drees, W. Fischer, W. Fu, C.J. Gardner, D.M. Gassner, J.W. Glenn, Y. Hao, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, B. Oerter, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, T. Russo, P. Sampson, J. Sandberg, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, K. Smith, D. Steski, S. Tepikian, C. Theisen, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

Since the last successful RHIC Au+Au run in 2007 (Run7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run7 RHIC achieved an average store luminosity of <L>=12x1026 cm-2 s-1 by operating with 103 bunches (out of 110 possible), and by squeezing to β*=0.8 m. Our goal for this year's run, Run10, was to achieve an average of <L>=27x1026 cm-2 s-1. The measures taken were decreasing β* to 0.6 m, and reducing longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF system, and separated transition crossings in both rings while ramping. We present an overview of the changes and the results in terms of Run10 increased instantaneous luminosity, luminosity lifetime, and integrated luminosity.

 
MOPEC033 RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9 531
 
  • C. Montag, L. Ahrens, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, A.V. Fedotov, W. Fischer, G. Ganetis, C.J. Gardner, J.W. Glenn, H. Hahn, M. Harvey, T. Hayes, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, A. Kayran, J. Kewisch, R.C. Lee, D.I. Lowenstein, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, N. Malitsky, G.J. Marr, A. Marusic, M.P. Menga, R.J. Michnoff, M.G. Minty, J. Morris, B. Oerter, F.C. Pilat, P.H. Pile, E. Pozdeyev, V. Ptitsyn, G. Robert-Demolaize, T. Roser, T. Russo, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, M. Sivertz, K. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

During the second half of Run-9, the Relativistic Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points with both longitudinal and vertical spin direction. Despite an increase in the peak luminosity by up to 40%, the average store luminosity did not increase compared to previous runs. We discuss the luminosity limitations and polarization performance during Run-9.

 
THPE099 RHIC Proton Beam Lifetime Increase with 10- and 12-pole Correctors 4752
 
  • W. Fischer, J. Beebe-Wang, Y. Luo, S. Nemesure
    BNL, Upton, Long Island, New York
  • L.K. Rajulapati
    SBU, Stony Brook, New York
 
 

The RHIC beam lifetime in polarized proton operation is dominated by the beam-beam effect, parameter modulations, and nonlinear magnet errors in the interaction region magnets. Sextupole and skew sextupole errors have been corrected deterministically for a number of years based on tune shift measurements with orbit bumps in the triplets. During the most recent polarized proton run 10- and 12-pole correctors were set through an iterative procedure, and used for the first time operationally in one of the beams. We report on the procedure to set these high-order multipole correctors and estimate their effect on the integrated luminosity.

 
THPE100 Bunch Length Effects in the Beam-beam Compensation with an Electron Lens 4755
 
  • W. Fischer, Y. Luo, C. Montag
    BNL, Upton, Long Island, New York
 
 

Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the beta-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches.

 
THPE102 6-D Weak-strong Simulation of Head-on Beam-beam Compensation in the RHIC 4758
 
  • Y. Luo, W. Fischer
    BNL, Upton, Long Island, New York
 
 

An electron lens was proposed to compensate the head-on beam-beam effect for polarized proton operations in the Relativistic Heady Ion Collider (RHIC). With head-on beam-beam compensation, we plan to reduce the beam-beam tune footprint and increase the beam-beam parameter to increase the luminosity. Here we carry out 6-D weak-strong beam-beam simulations to study the stability of proton particles and the proton beam lifetime in the presence of head-on beam-beam compensation. The effects and tolerances of the errors and noises in the compensation are also calculated.

 
THPE103 Sorting Chromatic Sectupoles for Second Order Chromaticity Correction in the RHIC 4761
 
  • Y. Luo, W. Fischer, G. Robert-Demolaize, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

In this article, based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose an online method with 4 knobs or 4 pairs of chromatic sextupole families to correct second order chromaticities. Numerical simulations support this method and shows that it improves the balance of correction strengths among the sextupole families and avoids reversal of sextupole polarities, as well as yielding larger dynamic apertures for the 2009 RHIC 100 GeV polarized proton run.