Paper | Title | Page |
---|---|---|
MOPE094 | X-band Travelling Wave Deflector for Ultra-fast Beams Diagnostics | 1206 |
|
||
The quest for detailed information concerning ultra-fast beam configurations, phase spaces and high energy operation is a critical task in the world of linear colliders and X-ray FELs. Huge enhancements in diagnostic resolutions are represented by RF deflectors. In this scenario, Radiabeam Technologies has developed an X-band Travelling wave Deflector (XTD) in order to perform longitudinal characterization of the subpicosecond ultra-relativistic electron beams. The device is optimized to obtain a single digit femtosecond resolution using 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory; however, the design can be easily extended to be utilized for diagnostics of GeV-class beams. The XTD design fabrication and tuning results will be discussed, as well as installation and commissioning plans at ATF. * J. England et al., "X-Band Dipole Mode Deflecting Cavity for the UCLA Neptune Beamline". |
||
THPEA057 | Development of a CW NCRF Photoinjector using Solid Freeform Fabrication (SFF) | 3804 |
|
||
A key issue for high average power, normal conducting radio frequency (NCRF), photoinjectors is efficient structure cooling. To that end, RadiaBeam has been developing the use of Solid Freeform Fabrication (SFF) for the production of NCRF photoinjectors. In this paper we describe the preliminary design of a high gradient, very high duty cycle, photoinjector combining the cooling efficiency only possible through the use of SFF, and the RF efficiency of a re-entrant gun design. Simulations of the RF and thermal-stress performance will be presented, as well as material testing of SFF components. |
||
THPEA059 | Ultra-high Gradient Compact S-band Linac for Laboratory and Industrial Applications | 3807 |
|
||
There is growing demand from the industrial and research communities for high gradient, compact RF accelerating structures. The commonly used S-band SLAC-type structure has an operating gradient of only about 20 MV/m; while much higher operating gradients (up to 70 MV/m) have been recently achieved in X-band, as a consequence of the substantial efforts by the Next Linear Collider (NLC) collaboration to push the performance envelope of RF structures towards higher accelerating gradients. Currently however, high power X-band RF sources are not readily available for industrial applications. Therefore, RadiaBeam Technologies is developing a short, standing wave S-band structure which uses frequency scaled NLC design concepts to achieve up to a 50 MV/m operating gradient at 2856 MHz. The design and prototype commissioning plans are presented. |
||
TUPEC021 | SW/TW Hybrid Photoinjector and its Application to the Coherent THz Radiation | 1758 |
|
||
A unique SW/TW hybrid photoinjector are being developed under the collaboration of UCLA, LNF/INFN, and University of Rome. It can produce 240-fs (rms) bunch with 500 pC at 21 MeV. The bunch distribution has a strong spike (54 fs FWHM) and the peak current is over 2kA. As the bunch form factor at 1 THz is 0.43, it can produce coherent radiation at 1 THz. We are considering three types of way to generate it; coherent Cherenkov radiation (CCR), superradiant FEL, and coherent transition/edge radiation (CTR/CER). CCR used hollow dielectric with the outer surface metallic-coated. OOPIC simulation showed 21 MW of the peak power (5 mJ) at 1 THz. For FEL and CTR/CER simulation, QUINDI, which was written at UCLA to solve the Lienard-Wiechert potential, was used to calculate the radiation properties. In the contrast to CCR, their spectra were broad and their pulse lengths were short. They will be useful for fast pumping. |
||
THPEA008 | Experimental Characterization of the RF Gun Prototype for the SPARX-FEL Project | 3688 |
|
||
The quest for high brightness beams is a crucial key for the SPARX-FEL Project. In this paper, we present the design (including RF modeling, cooling, thermal and stress analyses as well as frequency detuning) of a single feed S-Band RF Gun capable of running near 500 Hz. An alternative design with dual feed has already been designed. Also, experimental results from the RF characterization of the prototype, including field measurements, are presented. The RF design follows the guidelines of the LCLS Gun, but the approach diverges significantly as far as the management of the cooling and mechanical stress is concerned. Finally, we examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries that may enable very high repetition rate. * C.Limborg et al., "RF Design of the LCLS Gun". |