Paper | Title | Page |
---|---|---|
MOPEC075 | Status of the RAL Front End Test Stand | 642 |
|
||
The Front End Test Stand (FETS) under construction at the Rutherford Appleton Laboratory is the UK's contribution to research into the next generation of High Power Proton Accelerators (HPPAs). HPPAs are an essential part of any future Spallation Neutron Source, Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical System, Waste Transmuter etc. FETS will demonstrate a high quality, high intensity, chopped H-minus beam and is a collaboration between RAL, Imperial College and the Universtity of Warwick in the UK and the Universidad del Pais Vasco in Spain. This paper describes the current status and future plans of FETS. |
||
TUPEA055 | Design and Implementation of a Pulsed Digital LLRF System for the RAL Front End Test Stand | 1458 |
|
||
Design, implementation and some practical results of the pulsed digital LLRF system (amplitude, phase and tuning loops) of the RFQ for the ISIS front end test stand are presented. The design is based on a fast analog front-end for RF-baseband conversion and a model-based Virtex-4 FPGA unit for signal processing and PI regulation. Complexity of the LLRF timing is significantly reduced and the LLRF requirements are fulfilled by utilizing the RF-baseband conversion method compared to the conventional RF-IF approach. Validity of the control loops is ensured practically by hardware-in-the-loop co-simulation of the system in MATLAB-Simulink using an aluminium mock-up cavity. It was shown through extensive tests that the LLRF system meets all the requirements including amplitude and phase stability, dynamic range, noise level and additionally provides a full amplitude and phase control range and a phase margin larger than 90 degrees for loop stability. |
||
WEPEB014 | Networked Control System Over an EPICS based Environment | 2713 |
|
||
The use of distributed control systems for improving control system's performance is a hot research topic. Thus, the importance of developing control systems across networked environment is rising, a lot of research is focused on developing middleware based solutions. On the other hand, EPICS is an extended control system middleware, which is based on TCP/UDP protocol. This protocol has non-deterministic characteristics, limiting its use for networked control systems. Despite of these characteristics, the interest on TCP based networks in industrial field has been increasing due to its advantages in cost and easy integration. In this work, EPICS as a networked control system is analyzed in order to develop strategies to improve its performance. For this purpose, an EPICS based networked control scheme is presented, where control loop is closed over the net. As opposed to usual way of working with EPICS, two IOCs are used located in different hosts. The first one performs data acquisition, while the second one calculates the control signal. The analysis and control performance study of such scheme is presented by using periodic sampling, as well as event based sampling approach. |
||
THPEC068 | First Simulation Tests for the Bilbao Accelerator Ion Source Test Stand | 4211 |
|
||
The rationale behind the Bilbao Accelerator Ion Source Test Stand (ITUR) project is to perform a comparison between different kinds of hydrogen ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning-type sources such as those currently being used in ISIS (UK) and those of microwave type such as CEA-Saclay and INFN. The aim here pursued is to build an Ion Source Test Stand where virtually any type of source can be tested and, thus, compared to the results of other sources under the same gauge. It would then be possible to establish a common ground for effectively comparing different ion sources. The work here presented reports on the first simulations for the H-/H+ extraction system, as well the devices that conform the diagnostic vessel: Faraday Cup, Pepperpot and Retarding Potential Analyzer (RPA), among others. |