A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dimopoulou, C.

Paper Title Page
MOPD066 A Novel Method for the Preparation of Cooled Rare Isotope Beams 840
 
  • M. Steck, C. Brandau, C. Dimopoulou, C. Kozhuharov, F. Nolden
    GSI, Darmstadt
 
 

The ESR storage ring at GSI is operated with a wide range of heavy ions. In addition to stable heavy ions also rare isotope beams are studied in various experiments. A novel method to provide one- or few-component cooled fragment beams has been demonstrated experimentally. This technique uses a primary high energy heavy ion beam (several hundred MeV/u) bombarding a thick target in front of the storage ring. The reaction products are first separated by the magnetic structure of the storage ring. After storage of isotopes in a rigidity window of typically ± 2 per mille the isotopes are cooled to the same velocity by electron cooling. The cooled ions are circulating on different orbits according to their mass and charge. The momentum spread of the individual components is on the order 0.01 per mille or smaller depending on the intensity. The different components are radially well separated in regions with large dispersion. By the use of mechanical scrapers beam components in a certain radial region, corresponding to a range in masses and charges, can be selected, This way the stored rare isotope beam is curtailed to the components of choice.

 
THPEC038 The Concept of Antiproton Accumulation in the RESR Storage Ring of the FAIR Project 4140
 
  • M. Steck, C. Dimopoulou, A. Dolinskyy, B. Franzke, T. Katayama, S.A. Litvinov, F. Nolden, C. Peschke
    GSI, Darmstadt
  • D. Möhl, L. Thorndahl
    CERN, Geneva
 
 

In the complex of the accelerators of the FAIR project the RESR storage ring is mainly designed as an accumulator ring for antiprotons. The continuous accumulation of pre-cooled batches with a cycle time of 10 s from the collector ring is essential to achieve the goal of a production rate of 10 million antiprotons per second. The accumulation in the RESR uses a stochastic cooling system which operates in longitudinal phase space, similar as previous antiproton accumulator rings at CERN and FNAL. The ingredients of the accumulation system, the ring lattice functions, the electrode design and the electrical circuits have been studied in detailed simulations. A system has been found which safely provides the required performance and offers the option of upgrades, if higher accumulation rate is required in future. Maximum intensities of 100 billion cooled antiprotons are planned which are expected to stay below the instability threshold.